Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition.

Journal Article (Journal Article)

Mitochondrial permeability transition (MPT) pores have recently been implicated as a potential mediator of myocardial ischemic injury. Nitric oxide (NO) donors induce a powerful late phase of cardioprotection against ischemia-reperfusion injury; however, the cellular mechanisms involved are poorly understood. The role of MPT pores as a target of cardioprotective signaling pathways activated by NO has never been explored in detail. Thus mice were administered the NO donor diethylenetriamine (DETA)/NO (4 doses of 0.1 mg/kg i.v. each) 24 h before 30 min of coronary artery occlusion followed by 24 h of reperfusion. Infarct size was significantly reduced in DETA/NO-treated mice (30 +/- 2% of risk region in treated mice vs. 50 +/- 2% in control mice; P < 0.05), which demonstrates powerful cardioprotection. To examine the role of MPT pores, mice were administered atractyloside (Atr; 25 mg/kg i.v.), which induces adenine nucleotide translocase-dependent MPT, 20 min before ischemia. Atr blocked the infarct-sparing effects of DETA/NO (infarct size, 58 +/- 1 vs. 30 +/- 2% of risk region in DETA/NO; P < 0.05), whereas Atr alone had no effect. Mitochondria isolated from DETA/NO-treated mice exhibited increased resistance to Ca(2+)-induced swelling by 20 micromol/l CaCl(2) or by the higher concentration of 200 micromol/l, which suggests that cardioprotection involves decreased propensity for MPT. Preincubation of mitochondria from control hearts with 30 nmol/l of the pore inhibitor cyclosporin A prevented swelling by 200 micromol/l CaCl(2), thereby confirming that Ca(2+) induces mitochondrial swelling via MPT. In accordance with the effects on infarct size, administration of Atr to the mice significantly abrogated DETA/NO-induced protection against Ca(2+)-induced mitochondrial swelling. These phenotypic alterations were associated with an increase in the antiapoptotic protein Bcl-2, which suggests that the underlying mechanisms may involve inhibition of cell death by Bcl-2. These data suggest that a critical process during NO donor-induced cardioprotection is to prevent MPT pore opening potentially via targeting of the adenine nucleotide translocator.

Full Text

Duke Authors

Cited Authors

  • Wang, G; Liem, DA; Vondriska, TM; Honda, HM; Korge, P; Pantaleon, DM; Qiao, X; Wang, Y; Weiss, JN; Ping, P

Published Date

  • March 2005

Published In

Volume / Issue

  • 288 / 3

Start / End Page

  • H1290 - H1295

PubMed ID

  • 15528225

International Standard Serial Number (ISSN)

  • 0363-6135

Digital Object Identifier (DOI)

  • 10.1152/ajpheart.00796.2004

Language

  • eng

Conference Location

  • United States