Utility of a Rule-Based Algorithm in the Assessment of Standardized Reporting in PI-RADS.

Journal Article (Journal Article)

RATIONALE AND OBJECTIVES: Adoption of the Prostate Imaging Reporting & Data System (PI-RADS) has been shown to increase detection of clinically significant prostate cancer on prostate mpMRI. We propose that a rule-based algorithm based on Regular Expression (RegEx) matching can be used to automatically categorize prostate mpMRI reports into categories as a means by which to assess for opportunities for quality improvement. MATERIALS AND METHODS: All prostate mpMRIs performed in the Duke University Health System from January 2, 2015, to January 29, 2021, were analyzed. Exclusion criteria were applied, for a total of 5343 male patients and 6264 prostate mpMRI reports. These reports were then analyzed by our RegEx algorithm to be categorized as PI-RADS 1 through PI-RADS 5, Recurrent Disease, or "No Information Available." A stratified, random sample of 502 mpMRI reports was reviewed by a blinded clinical team to assess performance of the RegEx algorithm. RESULTS: Compared to manual review, the RegEx algorithm achieved overall accuracy of 92.6%, average precision of 88.8%, average recall of 85.6%, and F1 score of 0.871. The clinical team also reviewed 344 cases that were classified as "No Information Available," and found that in 150 instances, no numerical PI-RADS score for any lesion was included in the impression section of the mpMRI report. CONCLUSION: Rule-based processing is an accurate method for the large-scale, automated extraction of PI-RADS scores from the text of radiology reports. These natural language processing approaches can be used for future initiatives in quality improvement in prostate mpMRI reporting with PI-RADS.

Full Text

Duke Authors

Cited Authors

  • Zhang, D; Neely, B; Lo, JY; Patel, BN; Hyslop, T; Gupta, RT

Published Date

  • July 28, 2022

Published In

PubMed ID

  • 35909050

Electronic International Standard Serial Number (EISSN)

  • 1878-4046

Digital Object Identifier (DOI)

  • 10.1016/j.acra.2022.06.024


  • eng

Conference Location

  • United States