Cytosolic phospholipase A(2) activity associated with nuclei is not inhibited by arachidonyl trifluoromethyl ketone in macrophages stimulated with receptor-recognized forms of alpha(2)-macroglobulin.

Journal Article (Journal Article)

We have studied the translocation of cytosolic phospholipase A(2) (cPLA(2)) to nuclei in macrophages stimulated with receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*). Translocation of phosphorylated cPLA(2) to nuclei was determined by immunoprecipitation of cPLA(2) in (32)P(i)-labeled cells. The identity of cPLA(2) was established by comparing its mobility on gels with an authentic cPLA(2) standard. cPLA(2) activity was quantified by measuring the release of [(14)C]arachidonic acid from the substrate 1-palmitoyl-2-[1-(14)C]arachidonyl-sn-glycerophosphatidylcholine. alpha(2)M* caused a two- to threefold increase in cPLA(2) phosphorylation and its translocation to nuclei. The p38 MAPK inhibitor SB203580, PKC inhibitor chelerythrin, or depletion of intracellular Ca(2+) profoundly decreased cPLA(2) activity in nuclei isolated from agonist-stimulated cells. The requirement for Ca(2+), PKC, and p38 MAPK activation appears to be of major importance for nuclear cPLA(2) activity. In contrast to cellular cPLA(2) activity, nuclear cPLA(2) activity was not inhibited by arachidonyl trifluoromethyl ketone (AACOCF(3)) in agonist-stimulated cells. It is concluded that the association of cPLA(2) with nuclear membranes in agonist-stimulated cells modifies the activity and the sensitivity of the enzyme to inhibition by AACOCF(3) in this phospholipid environment.

Full Text

Duke Authors

Cited Authors

  • Misra, UK; Pizzo, SV

Published Date

  • July 1, 2000

Published In

Volume / Issue

  • 379 / 1

Start / End Page

  • 153 - 160

PubMed ID

  • 10864453

International Standard Serial Number (ISSN)

  • 0003-9861

Digital Object Identifier (DOI)

  • 10.1006/abbi.2000.1878


  • eng

Conference Location

  • United States