Biomaterial-mediated retroviral gene transfer using self-assembled monolayers.

Published

Journal Article

Biomaterial-mediated gene delivery has recently emerged as a promising alternative to conventional gene transfer technologies that focus on direct delivery of viral vectors or DNA-polymer/matrix complexes. However, biomaterial-based strategies have primarily targeted transient gene expression vehicles, including plasmid DNA and adenovirus particles. This study expands on this work by characterizing biomaterial properties conducive to the surface immobilization of retroviral particles and subsequent transduction of mammalian cells at the cell-material interface. Self-assembled monolayers (SAMs) of functionally-terminated alkanethiols on gold were used to establish biomaterial surfaces of defined chemical composition. Gene transfer was observed to be greater than 90% on NH(2)-terminated surfaces, approximately 50% on COOH-functionalized surfaces, and undetectable on CH(3)-terminated SAMs, similar to controls of tissue culture-treated polystyrene. Gene delivery via the NH(2)-SAM was further characterized as a function of retrovirus coating time, virus concentration, and cell seeding density. Finally, SAM-mediated gene delivery was comparable to fibronectin- and poly-l-lysine-based methods for gene transfer. This work is significant to establishing safe and effective gene therapy strategies, developing efficient methods for gene delivery, and supporting recent progress in the field of biomaterial-mediated gene transfer.

Full Text

Duke Authors

Cited Authors

  • Gersbach, CA; Coyer, SR; Le Doux, JM; García, AJ

Published Date

  • December 2007

Published In

Volume / Issue

  • 28 / 34

Start / End Page

  • 5121 - 5127

PubMed ID

  • 17698189

Pubmed Central ID

  • 17698189

Electronic International Standard Serial Number (EISSN)

  • 1878-5905

International Standard Serial Number (ISSN)

  • 0142-9612

Digital Object Identifier (DOI)

  • 10.1016/j.biomaterials.2007.07.047

Language

  • eng