Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function.

Published

Journal Article

Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.

Full Text

Duke Authors

Cited Authors

  • Fueger, PT; Schisler, JC; Lu, D; Babu, DA; Mirmira, RG; Newgard, CB; Hohmeier, HE

Published Date

  • May 2008

Published In

Volume / Issue

  • 22 / 5

Start / End Page

  • 1251 - 1259

PubMed ID

  • 18258687

Pubmed Central ID

  • 18258687

Electronic International Standard Serial Number (EISSN)

  • 1944-9917

International Standard Serial Number (ISSN)

  • 0888-8809

Digital Object Identifier (DOI)

  • 10.1210/me.2007-0500

Language

  • eng