Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.

Published

Journal Article

We describe the phenomenon of mechanoelectrical transduction in macroscopic lipid bilayer membranes modified by two cation-selective ionophores, valinomycin and nonactin. We found that bulging these membranes, while maintaining the membrane tension constant, produced a marked supralinear increase in specific carrier-mediated conductance. Analyses of the mechanisms involved in mechanoelectrical transduction induced by the imposition of a hydrostatic pressure gradient or by an amphipathic compound chlorpromazine reveal similar changes in the charge carrier motility and carrier reaction rates at the interface(s). Furthermore, the relative change in membrane conductance was independent of membrane diameter, but was directly proportional to the square of membrane curvature, thus relating the observed phenomena to the bilayer bending energy. Extrapolated to biological membranes, these findings indicate that ion transport in cells can be influenced simply by changing shape of the membrane, without a change in membrane tension.

Full Text

Duke Authors

Cited Authors

  • Shlyonsky, VG; Markin, VS; Andreeva, I; Pedersen, SE; Simon, SA; Benos, DJ; Ismailov, II

Published Date

  • November 2006

Published In

Volume / Issue

  • 1758 / 11

Start / End Page

  • 1723 - 1731

PubMed ID

  • 17069752

Pubmed Central ID

  • 17069752

International Standard Serial Number (ISSN)

  • 0006-3002

Digital Object Identifier (DOI)

  • 10.1016/j.bbamem.2006.09.016

Language

  • eng

Conference Location

  • Netherlands