Skip to main content
Journal cover image

Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.

Publication ,  Journal Article
Pelot, NA; Behrend, CE; Grill, WM
Published in: Journal of neural engineering
August 2017

There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear.We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs.We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model.Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of neural engineering

DOI

EISSN

1741-2552

ISSN

1741-2560

Publication Date

August 2017

Volume

14

Issue

4

Start / End Page

046022

Related Subject Headings

  • Vagus Nerve
  • Neural Conduction
  • Nerve Fibers, Myelinated
  • Models, Neurological
  • Humans
  • Biomedical Engineering
  • Axons
  • Action Potentials
  • 4003 Biomedical engineering
  • 3209 Neurosciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pelot, N. A., Behrend, C. E., & Grill, W. M. (2017). Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. Journal of Neural Engineering, 14(4), 046022. https://doi.org/10.1088/1741-2552/aa6a5f
Pelot, N. A., C. E. Behrend, and W. M. Grill. “Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.Journal of Neural Engineering 14, no. 4 (August 2017): 046022. https://doi.org/10.1088/1741-2552/aa6a5f.
Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. Journal of neural engineering. 2017 Aug;14(4):046022.
Pelot, N. A., et al. “Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.Journal of Neural Engineering, vol. 14, no. 4, Aug. 2017, p. 046022. Epmc, doi:10.1088/1741-2552/aa6a5f.
Pelot NA, Behrend CE, Grill WM. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. Journal of neural engineering. 2017 Aug;14(4):046022.
Journal cover image

Published In

Journal of neural engineering

DOI

EISSN

1741-2552

ISSN

1741-2560

Publication Date

August 2017

Volume

14

Issue

4

Start / End Page

046022

Related Subject Headings

  • Vagus Nerve
  • Neural Conduction
  • Nerve Fibers, Myelinated
  • Models, Neurological
  • Humans
  • Biomedical Engineering
  • Axons
  • Action Potentials
  • 4003 Biomedical engineering
  • 3209 Neurosciences