Biodistribution and sensitive tracking of immune cells with plasmonic gold nanostars.
Aim: To quantitatively and sensitively investigate the biodistribution of immune cells after systemic administration. Methods: Immune cells were loaded with plasmonic gold nanostars (GNS) tracking probes. Inductively coupled plasma mass spectrometry (ICP-MS) was used for quantitative gold mass measurement and two-photon photoluminescence (TPL) was used for high-resolution sensitive optical imaging. Results: GNS nanoparticles were loaded successfully into immune cells without negative effect on cellular vitality. Liver and spleen were identified to be the major organs for macrophage cells uptake after systematic administration. A small amount of macrophage cells were detected in the tumor site in our murine lymphoma animal model. Conclusion: GNS has great potential as a biocompatible marker for quantitative tracking and high-resolution imaging of immune cells at the cellular level.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Start / End Page
Location
Related Subject Headings
- Tissue Distribution
- Nanoscience & Nanotechnology
- Mice, Inbred C57BL
- Metal Nanoparticles
- Macrophages
- Lymphocytes
- Gold
- Cell Survival
- Cell Line, Tumor
- Animals
Citation
Published In
DOI
EISSN
Publication Date
Volume
Start / End Page
Location
Related Subject Headings
- Tissue Distribution
- Nanoscience & Nanotechnology
- Mice, Inbred C57BL
- Metal Nanoparticles
- Macrophages
- Lymphocytes
- Gold
- Cell Survival
- Cell Line, Tumor
- Animals