Skip to main content
Journal cover image

Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes.

Publication ,  Journal Article
Pathmanapan, S; Ilkayeva, O; Martin, JT; Loe, AKH; Zhang, H; Zhang, G-F; Newgard, CB; Wunder, JS; Alman, BA
Published in: Cancer Metab
March 24, 2021

BACKGROUND: Majority of chondrosarcomas are associated with a number of genetic alterations, including somatic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 genes, but the downstream effects of these mutated enzymes on cellular metabolism and tumor energetics are unknown. As IDH mutations are likely to be involved in malignant transformation of chondrosarcomas, we aimed to exploit metabolomic changes in IDH mutant and non-mutant chondrosarcomas. METHODS: Here, we profiled over 69 metabolites in 17 patient-derived xenografts by targeted mass spectrometry to determine if metabolomic differences exist in mutant IDH1, mutant IDH2, and non-mutant chondrosarcomas. UMAP (Uniform Manifold Approximation and Projection) analysis was performed on our dataset to examine potential similarities that may exist between each chondrosarcoma based on genotype. RESULTS: UMAP revealed that mutant IDH chondrosarcomas possess a distinct metabolic profile compared with non-mutant chondrosarcomas. More specifically, our targeted metabolomics study revealed large-scale differences in organic acid intermediates of the tricarboxylic acid (TCA) cycle, amino acids, and specific acylcarnitines in chondrosarcomas. Lactate and late TCA cycle intermediates were elevated in mutant IDH chondrosarcomas, suggestive of increased glycolytic metabolism and possible anaplerotic influx to the TCA cycle. A broad elevation of amino acids was found in mutant IDH chondrosarcomas. A few acylcarnitines of varying carbon chain lengths were also elevated in mutant IDH chondrosarcomas, but with minimal clustering in accordance with tumor genotype. Analysis of previously published gene expression profiling revealed increased expression of several metabolism genes in mutant IDH chondrosarcomas, which also correlated to patient survival. CONCLUSIONS: Overall, our findings suggest that IDH mutations induce global metabolic changes in chondrosarcomas and shed light on deranged metabolic pathways.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cancer Metab

DOI

ISSN

2049-3002

Publication Date

March 24, 2021

Volume

9

Issue

1

Start / End Page

13

Location

England

Related Subject Headings

  • 3211 Oncology and carcinogenesis
  • 3205 Medical biochemistry and metabolomics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pathmanapan, S., Ilkayeva, O., Martin, J. T., Loe, A. K. H., Zhang, H., Zhang, G.-F., … Alman, B. A. (2021). Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes. Cancer Metab, 9(1), 13. https://doi.org/10.1186/s40170-021-00247-8
Pathmanapan, Sinthu, Olga Ilkayeva, John T. Martin, Adrian Kwan Ho Loe, Hongyuan Zhang, Guo-Fang Zhang, Christopher B. Newgard, Jay S. Wunder, and Benjamin A. Alman. “Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes.Cancer Metab 9, no. 1 (March 24, 2021): 13. https://doi.org/10.1186/s40170-021-00247-8.
Pathmanapan S, Ilkayeva O, Martin JT, Loe AKH, Zhang H, Zhang G-F, et al. Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes. Cancer Metab. 2021 Mar 24;9(1):13.
Pathmanapan, Sinthu, et al. “Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes.Cancer Metab, vol. 9, no. 1, Mar. 2021, p. 13. Pubmed, doi:10.1186/s40170-021-00247-8.
Pathmanapan S, Ilkayeva O, Martin JT, Loe AKH, Zhang H, Zhang G-F, Newgard CB, Wunder JS, Alman BA. Mutant IDH and non-mutant chondrosarcomas display distinct cellular metabolomes. Cancer Metab. 2021 Mar 24;9(1):13.
Journal cover image

Published In

Cancer Metab

DOI

ISSN

2049-3002

Publication Date

March 24, 2021

Volume

9

Issue

1

Start / End Page

13

Location

England

Related Subject Headings

  • 3211 Oncology and carcinogenesis
  • 3205 Medical biochemistry and metabolomics