Skip to main content
Journal cover image

DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists.

Publication ,  Journal Article
Naqvi, I; Giroux, N; Olson, L; Morrison, SA; Llanga, T; Akinade, TO; Zhu, Y; Zhong, Y; Bose, S; Arvai, S; Abramson, K; Chen, L; Que, L ...
Published in: Biomaterials
April 2022

Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biomaterials

DOI

EISSN

1878-5905

Publication Date

April 2022

Volume

283

Start / End Page

121393

Location

Netherlands

Related Subject Headings

  • Toll-Like Receptors
  • SARS-CoV-2
  • Pathogen-Associated Molecular Pattern Molecules
  • Nucleic Acids
  • Humans
  • COVID-19
  • Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Naqvi, I., Giroux, N., Olson, L., Morrison, S. A., Llanga, T., Akinade, T. O., … Sullenger, B. (2022). DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials, 283, 121393. https://doi.org/10.1016/j.biomaterials.2022.121393
Naqvi, Ibtehaj, Nicholas Giroux, Lyra Olson, Sarah Ahn Morrison, Telmo Llanga, Tolu O. Akinade, Yuefei Zhu, et al. “DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists.Biomaterials 283 (April 2022): 121393. https://doi.org/10.1016/j.biomaterials.2022.121393.
Naqvi I, Giroux N, Olson L, Morrison SA, Llanga T, Akinade TO, et al. DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials. 2022 Apr;283:121393.
Naqvi, Ibtehaj, et al. “DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists.Biomaterials, vol. 283, Apr. 2022, p. 121393. Pubmed, doi:10.1016/j.biomaterials.2022.121393.
Naqvi I, Giroux N, Olson L, Morrison SA, Llanga T, Akinade TO, Zhu Y, Zhong Y, Bose S, Arvai S, Abramson K, Chen L, Que L, Kraft B, Shen X, Lee J, Leong KW, Nair SK, Sullenger B. DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials. 2022 Apr;283:121393.
Journal cover image

Published In

Biomaterials

DOI

EISSN

1878-5905

Publication Date

April 2022

Volume

283

Start / End Page

121393

Location

Netherlands

Related Subject Headings

  • Toll-Like Receptors
  • SARS-CoV-2
  • Pathogen-Associated Molecular Pattern Molecules
  • Nucleic Acids
  • Humans
  • COVID-19
  • Biomedical Engineering