Skip to main content
Journal cover image

Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity.

Publication ,  Journal Article
Englander, ZA; Foody, JN; Cutcliffe, HC; Wittstein, JR; Spritzer, CE; DeFrate, LE
Published in: Am J Sports Med
August 2022

BACKGROUND: Quadriceps loading of the anterior cruciate ligament (ACL) may play a role in the noncontact mechanism of ACL injury. Musculoskeletal modeling techniques are used to estimate the intrinsic force of the quadriceps acting at the knee joint. PURPOSE/HYPOTHESIS: The purpose of this paper was to develop a novel musculoskeletal model of in vivo quadriceps force during dynamic activity. We used the model to estimate quadriceps force in relation to ACL strain during a single-leg jump. We hypothesized that quadriceps loading of the ACL would reach a local maximum before initial ground contact with the knee positioned in extension. STUDY DESIGN: Descriptive laboratory study. METHODS: Six male participants underwent magnetic resonance imaging in addition to high-speed biplanar radiography during a single-leg jump. Three-dimensional models of the knee joint, including the femur, tibia, patellofemoral cartilage surfaces, and attachment-site footprints of the patellar tendon, quadriceps tendon, and ACL, were created from the magnetic resonance imaging scans. The bone models were registered to the biplanar radiographs, thereby reproducing the positions of the knee joint at the time of radiographic imaging. The magnitude of quadriceps force was determined for each knee position based on a 3-dimensional balance of the forces and moments of the patellar tendon and the patellofemoral cartilage contact acting on the patella. Knee kinematics and ACL strain were determined for each knee position. RESULTS: A local maximum in average quadriceps force of approximately 6500 N (8.4× body weight) occurred before initial ground contact. ACL strain increased concurrently with quadriceps force when the knee was positioned in extension. CONCLUSION: This novel participant-specific modeling technique provides estimates of in vivo quadriceps force during physiologic dynamic loading. A local maximum in quadriceps force before initial ground contact may tension the ACL when the knee is positioned in extension. CLINICAL RELEVANCE: These data contribute to understanding noncontact ACL injury mechanisms and the potential role of quadriceps activation in these injuries.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Am J Sports Med

DOI

EISSN

1552-3365

Publication Date

August 2022

Volume

50

Issue

10

Start / End Page

2688 / 2697

Location

United States

Related Subject Headings

  • Quadriceps Muscle
  • Orthopedics
  • Multimodal Imaging
  • Male
  • Knee Joint
  • Humans
  • Biomechanical Phenomena
  • Anterior Cruciate Ligament Injuries
  • Anterior Cruciate Ligament
  • 4207 Sports science and exercise
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Englander, Z. A., Foody, J. N., Cutcliffe, H. C., Wittstein, J. R., Spritzer, C. E., & DeFrate, L. E. (2022). Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity. Am J Sports Med, 50(10), 2688–2697. https://doi.org/10.1177/03635465221107085
Englander, Zoë A., Jacqueline N. Foody, Hattie C. Cutcliffe, Jocelyn R. Wittstein, Charles E. Spritzer, and Louis E. DeFrate. “Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity.Am J Sports Med 50, no. 10 (August 2022): 2688–97. https://doi.org/10.1177/03635465221107085.
Englander ZA, Foody JN, Cutcliffe HC, Wittstein JR, Spritzer CE, DeFrate LE. Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity. Am J Sports Med. 2022 Aug;50(10):2688–97.
Englander, Zoë A., et al. “Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity.Am J Sports Med, vol. 50, no. 10, Aug. 2022, pp. 2688–97. Pubmed, doi:10.1177/03635465221107085.
Englander ZA, Foody JN, Cutcliffe HC, Wittstein JR, Spritzer CE, DeFrate LE. Use of a Novel Multimodal Imaging Technique to Model In Vivo Quadriceps Force and ACL Strain During Dynamic Activity. Am J Sports Med. 2022 Aug;50(10):2688–2697.
Journal cover image

Published In

Am J Sports Med

DOI

EISSN

1552-3365

Publication Date

August 2022

Volume

50

Issue

10

Start / End Page

2688 / 2697

Location

United States

Related Subject Headings

  • Quadriceps Muscle
  • Orthopedics
  • Multimodal Imaging
  • Male
  • Knee Joint
  • Humans
  • Biomechanical Phenomena
  • Anterior Cruciate Ligament Injuries
  • Anterior Cruciate Ligament
  • 4207 Sports science and exercise