Processing-in-Memory Designs Based on Emerging Technology for Efficient Machine Learning Acceleration
The unprecedented success of artificial intelligence (AI) enriches machine learning (ML)-based applications. The availability of big data and compute-intensive algorithms empowers versatility and high accuracy in ML approaches. However, the data processing and innumerable computations burden conventional hardware systems with high power consumption and low performance. Breaking away from the traditional hardware design, non-conventional accelerators exploiting emerging technology have gained significant attention with a leap forward since the emerging devices enable processing-in-memory (PIM) designs of dramatic improvement in efficiency. This paper presents a summary of state-of-the-art PIM accelerators over a decade. The PIM accelerators have been implemented for diverse models and advanced algorithm techniques across diverse neural networks in language processing and image recognition to expedite inference and training. We will provide the implemented designs, methodologies, and results, following the development in the past years. The promising direction of the PIM accelerators, vertically stacking for More than Moore, is also discussed.