Overlooked branch turnover creates a widespread bias in forest carbon accounting.
Most measurements and models of forest carbon cycling neglect the carbon flux associated with the turnover of branch biomass, a physiological process quantified for other organs (fine roots, leaves, and stems). Synthesizing data from boreal, temperate, and tropical forests (184,815 trees), we found that including branch turnover increased empirical estimates of aboveground wood production by 16% (equivalent to 1.9 Pg Cy-1 globally), of similar magnitude to the observed global forest carbon sinks. In addition, reallocating carbon to branch turnover in model simulations reduced stem wood biomass, a long-lasting carbon storage, by 7 to 17%. This prevailing neglect of branch turnover suggests widespread biases in carbon flux estimates across global datasets and model simulations. Branch litterfall, sometimes used as a proxy for branch turnover, ignores carbon lost from attached dead branches, underestimating branch C turnover by 38% in a pine forest. Modifications to field measurement protocols and existing models are needed to allow a more realistic partitioning of wood production and forest carbon storage.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Wood
- Trees
- Forests
- Carbon Sequestration
- Carbon Cycle
- Carbon
- Biomass
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Wood
- Trees
- Forests
- Carbon Sequestration
- Carbon Cycle
- Carbon
- Biomass