Skip to main content

MammoTracker: Mask-Guided Lesion Tracking in Temporal Mammograms

Publication ,  Conference
Liu, X; Ren, Y; Ryser, MD; Grimm, LJ; Lo, JY
Published in: Lecture Notes in Computer Science
January 1, 2026

Accurate lesion tracking in temporal mammograms is essential for monitoring breast cancer progression and facilitating early diagnosis. However, automated lesion correspondence across exams remains a challenges in computer-aided diagnosis (CAD) systems, limiting their effectiveness. We propose MammoTracker, a mask-guided lesion tracking framework that automates lesion localization across consecutively exams. Our approach follows a coarse-to-fine strategy incorporating three key modules: global search, local search, and score refinement. To support large-scale training and evaluation, we introduce a new dataset with curated prior-exam annotations for 730 mass and calcification cases from the public EMBED mammogram dataset, yielding over 20000 lesion pairs, making it the largest known resource for temporal lesion tracking in mammograms. Experimental results demonstrate that MammoTracker achieves 0.455 average overlap and 0.509 accuracy, surpassing baseline models by 8%, highlighting its potential to enhance CAD-based lesion progression analysis. Our dataset will be available at https://gitlab.oit.duke.edu/railabs/LoGroup/mammotracker.

Duke Scholars

Published In

Lecture Notes in Computer Science

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

January 1, 2026

Volume

15963 LNCS

Start / End Page

285 / 295

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Liu, X., Ren, Y., Ryser, M. D., Grimm, L. J., & Lo, J. Y. (2026). MammoTracker: Mask-Guided Lesion Tracking in Temporal Mammograms. In Lecture Notes in Computer Science (Vol. 15963 LNCS, pp. 285–295). https://doi.org/10.1007/978-3-032-04965-0_27
Liu, X., Y. Ren, M. D. Ryser, L. J. Grimm, and J. Y. Lo. “MammoTracker: Mask-Guided Lesion Tracking in Temporal Mammograms.” In Lecture Notes in Computer Science, 15963 LNCS:285–95, 2026. https://doi.org/10.1007/978-3-032-04965-0_27.
Liu X, Ren Y, Ryser MD, Grimm LJ, Lo JY. MammoTracker: Mask-Guided Lesion Tracking in Temporal Mammograms. In: Lecture Notes in Computer Science. 2026. p. 285–95.
Liu, X., et al. “MammoTracker: Mask-Guided Lesion Tracking in Temporal Mammograms.” Lecture Notes in Computer Science, vol. 15963 LNCS, 2026, pp. 285–95. Scopus, doi:10.1007/978-3-032-04965-0_27.
Liu X, Ren Y, Ryser MD, Grimm LJ, Lo JY. MammoTracker: Mask-Guided Lesion Tracking in Temporal Mammograms. Lecture Notes in Computer Science. 2026. p. 285–295.

Published In

Lecture Notes in Computer Science

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

January 1, 2026

Volume

15963 LNCS

Start / End Page

285 / 295

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences