Skip to main content
Journal cover image

Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.

Publication ,  Journal Article
Jesneck, JL; Lo, JY; Baker, JA
Published in: Radiology
August 2007

PURPOSE: To retrospectively develop and evaluate computer-aided diagnosis (CAD) models that include both mammographic and sonographic descriptors. MATERIALS AND METHODS: Institutional review board approval was obtained for this HIPAA-compliant study. A waiver of informed consent was obtained. Mammographic and sonographic examinations were performed in 737 patients (age range, 17-87 years), which yielded 803 breast mass lesions (296 malignant, 507 benign). Radiologist-interpreted features from mammograms and sonograms were used as input features for linear discriminant analysis (LDA) and artificial neural network (ANN) models to differentiate benign from malignant lesions. An LDA with all the features was compared with an LDA with only stepwise-selected features. Classification performances were quantified by using receiver operating characteristic (ROC) analysis and were evaluated in a train, validate, and retest scheme. On the retest set, both LDAs were compared with radiologist assessment score of malignancy. RESULTS: Both the LDA and ANN achieved high classification performance with cross validation (area under the ROC curve [A(z)] = 0.92 +/- 0.01 [standard deviation] and (0.90)A(z) = 0.54 +/- 0.08 for LDA, A(z) = 0.92 +/- 0.01 and (0.90)A(z) = 0.55 +/- 0.08 for ANN). Results of both models generalized well to the retest set, with no significant performance differences between the validate and retest sets (P > .1). On the retest set, there were no significant performance differences between LDA with all features and LDA with only the stepwise-selected features (P > .3) and between either LDA and radiologist assessment score (P > .2). CONCLUSION: Results showed that combining mammographic and sonographic descriptors in a CAD model can result in high classification and generalization performance. On the retest set, LDA performance matched radiologist classification performance.

Duke Scholars

Published In

Radiology

DOI

ISSN

0033-8419

Publication Date

August 2007

Volume

244

Issue

2

Start / End Page

390 / 398

Location

United States

Related Subject Headings

  • Ultrasonography, Mammary
  • Sensitivity and Specificity
  • Retrospective Studies
  • ROC Curve
  • Predictive Value of Tests
  • Nuclear Medicine & Medical Imaging
  • Neural Networks, Computer
  • Middle Aged
  • Mammography
  • Image Interpretation, Computer-Assisted
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Jesneck, J. L., Lo, J. Y., & Baker, J. A. (2007). Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology, 244(2), 390–398. https://doi.org/10.1148/radiol.2442060712
Jesneck, Jonathan L., Joseph Y. Lo, and Jay A. Baker. “Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.Radiology 244, no. 2 (August 2007): 390–98. https://doi.org/10.1148/radiol.2442060712.
Jesneck, Jonathan L., et al. “Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.Radiology, vol. 244, no. 2, Aug. 2007, pp. 390–98. Pubmed, doi:10.1148/radiol.2442060712.
Jesneck JL, Lo JY, Baker JA. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology. 2007 Aug;244(2):390–398.
Journal cover image

Published In

Radiology

DOI

ISSN

0033-8419

Publication Date

August 2007

Volume

244

Issue

2

Start / End Page

390 / 398

Location

United States

Related Subject Headings

  • Ultrasonography, Mammary
  • Sensitivity and Specificity
  • Retrospective Studies
  • ROC Curve
  • Predictive Value of Tests
  • Nuclear Medicine & Medical Imaging
  • Neural Networks, Computer
  • Middle Aged
  • Mammography
  • Image Interpretation, Computer-Assisted