Skip to main content
Journal cover image

Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures.

Publication ,  Journal Article
Alman, BA; Naber, SP; Terek, RM; Jiranek, WA; Goldberg, MJ; Wolfe, HJ
Published in: J Orthop Res
January 1995

Despite the great variability in the clinical behavior of fibrous lesions of the musculoskeletal system, they are composed of cytologically similar fibrocytes. Receptors for estrogen or progesterone, or both, are present in some of these lesions and some increase their rate of growth during periods of high levels of sex steroid hormones. The platelet-derived growth factor-B (PDGF-B) proto-oncogene encodes the B chain of PDGF, a mitogen for fibrocytes. Tissue from aggressive fibromatosis, fibrous dysplasia, plantar fibromatosis, and recurrent plantar fibromatosis was analyzed with use of the polymerase chain reaction and in situ hybridization for the expression of PDGF-B and PDGF beta receptor. Cell culture was used to determine if estrogen and progesterone stimulation modulated the expression of PDGF-B. Aggressive fibromatosis, fibrous dysplasia, and recurrent plantar fibromatosis expressed PDGF-B; plantar fibromatosis, normal plantar fascia, normal fascia lata, and mature scar did not. All of the tissues expressed PDGF beta receptor. The level of expression in aggressive fibromatosis and fibrous dysplasia was four times that in the recurrent plantar fibromatosis. Estrogen and progesterone stimulation in aggressive fibromatosis resulted in an increase in the level of expression. Therefore, the detection of PDGF-B may be an adjunct in the pathologic identification of locally invasive lesions. Its production may be a common mechanism leading to a fibroproliferative response through deregulation of the control of growth by both paracrine and autocrine mechanisms.

Duke Scholars

Published In

J Orthop Res

DOI

ISSN

0736-0266

Publication Date

January 1995

Volume

13

Issue

1

Start / End Page

67 / 77

Location

United States

Related Subject Headings

  • Receptors, Platelet-Derived Growth Factor
  • Proto-Oncogene Proteins c-sis
  • Proto-Oncogene Proteins
  • Proto-Oncogene Mas
  • Progesterone
  • Polymerase Chain Reaction
  • Platelet-Derived Growth Factor
  • Orthopedics
  • Molecular Sequence Data
  • In Situ Hybridization
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Alman, B. A., Naber, S. P., Terek, R. M., Jiranek, W. A., Goldberg, M. J., & Wolfe, H. J. (1995). Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures. J Orthop Res, 13(1), 67–77. https://doi.org/10.1002/jor.1100130111
Alman, B. A., S. P. Naber, R. M. Terek, W. A. Jiranek, M. J. Goldberg, and H. J. Wolfe. “Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures.J Orthop Res 13, no. 1 (January 1995): 67–77. https://doi.org/10.1002/jor.1100130111.
Alman BA, Naber SP, Terek RM, Jiranek WA, Goldberg MJ, Wolfe HJ. Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures. J Orthop Res. 1995 Jan;13(1):67–77.
Alman, B. A., et al. “Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures.J Orthop Res, vol. 13, no. 1, Jan. 1995, pp. 67–77. Pubmed, doi:10.1002/jor.1100130111.
Alman BA, Naber SP, Terek RM, Jiranek WA, Goldberg MJ, Wolfe HJ. Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures. J Orthop Res. 1995 Jan;13(1):67–77.
Journal cover image

Published In

J Orthop Res

DOI

ISSN

0736-0266

Publication Date

January 1995

Volume

13

Issue

1

Start / End Page

67 / 77

Location

United States

Related Subject Headings

  • Receptors, Platelet-Derived Growth Factor
  • Proto-Oncogene Proteins c-sis
  • Proto-Oncogene Proteins
  • Proto-Oncogene Mas
  • Progesterone
  • Polymerase Chain Reaction
  • Platelet-Derived Growth Factor
  • Orthopedics
  • Molecular Sequence Data
  • In Situ Hybridization