Overview
My laboratory has two major research interests. The first involves a potent, selective, small-molecule inhibitor of various pro-inflammatory cytokines such as Tumor Necrosis Factor-alpha (TNF) or Monocyte Chemoattractant Protein-1 (MCP-1). This molecule, LMP-420, inhibits the transcription of mRNA for both TNF and MCP-1 as well as other pro-inflammatory chemokines such as Interferon Inducible Protein-10 (IP-10). Pro-inflammatory cytokines/chemokines such as these have been implicated in the pathogenesis of a number of major diseases, including rheumatoid arthritis, Crohn's disease, and psoriasis and are also suspected to play a role in other major diseases including asthma, insulin resistance associated with obesity-related diabetes, cachexia associated with cancer and AIDS, and with the replication of HIV itself. LMP-420 has demonstrated potent anti-inflammatory activity in rodents when delivered by a variety of routes including intraperitoneal and subcutaneous injections, aerosolization, and orally. Recently we identified the potential utility of LMP-420 as an effective and safe therapeutic agent for treatment of B-cell chronic lymphocytic leukemia, multiple myeloma, or other hematological malignancies. Our laboratory studies are aimed at determining both the molecular target(s) and mechanism(s) of action of this novel and potentially clinically-useful cytokine/chemokine inhibitor and for identifying new diseases in which it might have potential utility.
The second area of interest involves a series of novel, viral-related peptides which inhibits vascular leak syndrome. These biologically-active sequences have been well-conserved in nature and are found not only in pathogenic retroviruses but in a number of human endogenous retroviral sequences as well. In an animal model of disseminated intravascular coagulation (DIC), one of these peptides fully protected animals from the lethal consequences of DIC. We are investigating this and related peptides for use in treating or preventing hemorrhagic events in diseases such as dengue hemorrhagic fever. We are in the process of characterizing the mechanism of action of these unique molecules and identifying additional diseases in which they might be utilized.
The second area of interest involves a series of novel, viral-related peptides which inhibits vascular leak syndrome. These biologically-active sequences have been well-conserved in nature and are found not only in pathogenic retroviruses but in a number of human endogenous retroviral sequences as well. In an animal model of disseminated intravascular coagulation (DIC), one of these peptides fully protected animals from the lethal consequences of DIC. We are investigating this and related peptides for use in treating or preventing hemorrhagic events in diseases such as dengue hemorrhagic fever. We are in the process of characterizing the mechanism of action of these unique molecules and identifying additional diseases in which they might be utilized.
Current Appointments & Affiliations
Associate Professor Emeritus of Pathology
·
2021 - Present
Pathology,
Clinical Science Departments
Recent Publications
Anti-inflammatory and vasoprotective activity of a retroviral-derived peptide, homologous to human endogenous retroviruses: endothelial cell effects.
Journal Article PLoS One · 2012 Malignant and inflammatory tissues sometimes express endogenous retroviruses or their proteins. A highly-conserved sequence from retroviral transmembrane (TM) proteins, termed the "immunosuppressive domain (ID)", is associated with inhibition of immune and ... Full text Link to item CiteLMP-420, a small molecular inhibitor of TNF-α, prolongs islet allograft survival by induction of suppressor of cytokine signaling-1: synergistic effect with cyclosporin-A.
Journal Article Cell Transplant · 2012 Inflammatory insults following islet transplantation (ITx) hinders engraftment and long-term function of the transplanted (Tx) islets. Using a murine model of ITx, we determined the role of LMP-420, a novel TNF-α inhibitor, both individually and in combina ... Full text Link to item CiteLMP-420: a novel purine nucleoside analog with potent cytotoxic effects for CLL cells and minimal toxicity for normal hematopoietic cells.
Journal Article Leukemia · September 2010 B-cell chronic lymphocytic leukemia (CLL) is characterized by slow accumulation of malignant cells, which are supported in the microenvironment by cell-cell interactions and soluble cytokines such as tumor necrosis factor (TNF). We evaluated the effect of ... Full text Link to item CiteRecent Grants
Cell Receptors In Coagulation And Atherogenesis
ResearchCo Investigator · Awarded by National Institutes of Health · 1979 - 2008A Cooperative Research and Development Agreement
ResearchPrincipal Investigator · Awarded by US Army Medical Research · 2001 - 2007Same
ResearchPrincipal Investigator · Awarded by National Institutes of Health · 1997 - 1999View All Grants
Education, Training & Certifications
University of Miami ·
1977
Ph.D.