Roger D. Madison
Associate Professor Emeritus in Neurosurgery

Neuronal Plasticity: especially as related to the accuracy of peripheral nerve regeneration. My laboratory is currently involved in studying the efficacy of prosthetic "nerve guides" in rodents and non-human primates. The results suggest that such nerve guides can be as effective as a nerve graft to repair transected peripheral nerves. Limited clinical trials of the nerve guide prostheses are underway, in collaboration with a colleague in Denmark. The nerve regeneration work has more recently taken a molecular turn, and my laboratory is currently looking at the differential expression of genes that may underlie the accuracy of peripheral nerve regeneration. We have developed a double labeling technique which allows us to assess the accuracy of nerve regeneration at the single neuron level. We are finding that motor axons and sensory afferents to muscle display a greater than chance level to grow back to muscle as opposed to skin (ie. regeneration specificity). To identify genes and gene products that may be involved in this process, we are using classical subtractive hybridization, the PCR-based differential display of mRNAs, and amplified antisense RNA (aRNA) for Êexpression profilingË.

Current Appointments & Affiliations

Contact Information

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.