John Henry McCusker
Associate Professor Emeritus of Molecular Genetics and Microbiology
My research uses whole genome analysis as well as standard genetic and molecular biological techniques in S. cerevisiae and, in particular, applies these techniques to the following areas:
The development of S. cerevisiae as a microbial model for quantitative genetics. Quantitative traits are extremely important and have been extensively studied in higher eukaryotes. Unfortunately, our understanding of quantitative traits is poor because of: the polygenic and additive nature of quantitative trait loci; the complexity of the structures and processes affected by quantitative traits in higher eukaryotes; and, the large genome size and genetic intractability (compared to microorganisms) of high eukaryotes. The simplicity and genetic tractability of S. cerevisiae will alllow us to define quantitative traits in precise genetic and molecular terms. This analysis will aid our understanding of quantitative traits in higher eukaryotes.
The development of S. cerevisiae as a model for the pathogenic fungi. Our knowledge of fungal pathogenesis has been hampered by the genetic intractability of the pathogenic fungi. I have discovered pathogenic variants of S. cerevisiae and have shown that these strains have properties typical of other pathogenic fungi, such as the ability to grow at very high temperatures and a novel phase variation switching system. S. cerevisiae is a close relative of many of the pathogenic fungi and, as we have shown, is an emerging opportunistic pathogen which is virulent in mouse model systems. Genetic analysis of S. cerevisiae pathogenesis and virulence will be applied to more common pathogenic fungi, such as Candida albicans.
The study of phase variation in s. cerevisiae as a model for phase variation (or colony morphology switching) in pathogenic fungi. Phase variants are genetically heritable gene expression states. S. cerevisiae phase variation is also a model for cellular differentiation and gene regulation in higher eukaryotes.
The development of S. cerevisiae as a microbial model for quantitative genetics. Quantitative traits are extremely important and have been extensively studied in higher eukaryotes. Unfortunately, our understanding of quantitative traits is poor because of: the polygenic and additive nature of quantitative trait loci; the complexity of the structures and processes affected by quantitative traits in higher eukaryotes; and, the large genome size and genetic intractability (compared to microorganisms) of high eukaryotes. The simplicity and genetic tractability of S. cerevisiae will alllow us to define quantitative traits in precise genetic and molecular terms. This analysis will aid our understanding of quantitative traits in higher eukaryotes.
The development of S. cerevisiae as a model for the pathogenic fungi. Our knowledge of fungal pathogenesis has been hampered by the genetic intractability of the pathogenic fungi. I have discovered pathogenic variants of S. cerevisiae and have shown that these strains have properties typical of other pathogenic fungi, such as the ability to grow at very high temperatures and a novel phase variation switching system. S. cerevisiae is a close relative of many of the pathogenic fungi and, as we have shown, is an emerging opportunistic pathogen which is virulent in mouse model systems. Genetic analysis of S. cerevisiae pathogenesis and virulence will be applied to more common pathogenic fungi, such as Candida albicans.
The study of phase variation in s. cerevisiae as a model for phase variation (or colony morphology switching) in pathogenic fungi. Phase variants are genetically heritable gene expression states. S. cerevisiae phase variation is also a model for cellular differentiation and gene regulation in higher eukaryotes.
Current Appointments & Affiliations
- Associate Professor Emeritus of Molecular Genetics and Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 2022
Contact Information
- 239 Jones Bldg, Dept of Molecular Genetics & Microbiolo, Durham, NC 27710
- Duke Box 3020, Durham, NC 27710
-
mccus001@mc.duke.edu
(919) 681-6744
- Background
-
Education, Training, & Certifications
- Ph.D., Brandeis University 1987
-
Previous Appointments & Affiliations
- Associate Professor of Molecular Genetics and Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 2002 - 2022
- Assistant Professor of Microbiology, Molecular Genetics and Microbiology, Basic Science Departments 1995 - 2002
- Assistant Professor of Genetics, School of Medicine, Duke University 2000 - 2002
- Recognition
-
Awards & Honors
- Research
-
Selected Grants
- Nucleo-Mitochondrial quantitative traits in S. cerevisiae awarded by National Institutes of Health 2017 - 2022
- Genetics Training Grant awarded by National Institutes of Health 1979 - 2020
- Organization and Function of Cellular Structure awarded by National Institutes of Health 1975 - 2020
- High throughput S. cerevisiae HAM, GWA & QT/QTL architecture awarded by National Institutes of Health 2011 - 2016
- ANALYSIS OF GENETICALLY & ENVIRONMENTALLY OVERLAPPING YEAST QUANTITATIVE TRAITS awarded by National Institutes of Health 2007 - 2012
- S. Cerevisiae: Emergence of an Opportunistic Pathogen awarded by National Institutes of Health 2005 - 2010
- Fungal-specific drug targets: static vs. cidal starvation & toxic intermediates awarded by National Institutes of Health 2007 - 2010
- Phase Variation in Saccharomyces cerevisiae awarded by National Institutes of Health 1999 - 2005
- Genetic Diversity and Complex Traits in S Cerevisiae awarded by National Institutes of Health 1999 - 2004
- Iterative Cloning A Novel Approach To Quantitative Genetic awarded by National Science Foundation 1998 - 1999
- Publications & Artistic Works
-
Selected Publications
-
Academic Articles
-
Vijayraghavan, Sriram, Stanislav G. Kozmin, Pooja K. Strope, Daniel A. Skelly, Zhenguo Lin, John Kennell, Paul M. Magwene, Fred S. Dietrich, and John H. McCusker. “Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in Saccharomyces cerevisiae.” Genetics 211, no. 2 (February 2019): 773–86. https://doi.org/10.1534/genetics.118.301546.Full Text Link to Item
-
McCusker, John H. “Popping Out MX Cassettes from Saccharomyces cerevisiae.” Cold Spring Harb Protoc 2017, no. 4 (April 3, 2017): pdb.prot088120. https://doi.org/10.1101/pdb.prot088120.Full Text Link to Item
-
McCusker, John H. “MX Cassettes for Knocking Out Genes in Yeast.” Cold Spring Harb Protoc 2017, no. 4 (April 3, 2017): pdb.top080689. https://doi.org/10.1101/pdb.top080689.Full Text Link to Item
-
McCusker, John H. “Introducing MX Cassettes into Saccharomyces cerevisiae.” Cold Spring Harb Protoc 2017, no. 4 (April 3, 2017): pdb.prot088104. https://doi.org/10.1101/pdb.prot088104.Full Text Link to Item
-
Strope, Pooja K., Stanislav G. Kozmin, Daniel A. Skelly, Paul M. Magwene, Fred S. Dietrich, and John H. McCusker. “2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.” Fems Yeast Res 15, no. 8 (December 2015). https://doi.org/10.1093/femsyr/fov090.Full Text Link to Item
-
Strope, Pooja K., Daniel A. Skelly, Stanislav G. Kozmin, Gayathri Mahadevan, Eric A. Stone, Paul M. Magwene, Fred S. Dietrich, and John H. McCusker. “The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen.” Genome Res 25, no. 5 (May 2015): 762–74. https://doi.org/10.1101/gr.185538.114.Full Text Link to Item
-
Zhao, Ying, Pooja K. Strope, Stanislav G. Kozmin, John H. McCusker, Fred S. Dietrich, Robert J. Kokoska, and Thomas D. Petes. “Structures of naturally evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous recombination.” G3 (Bethesda) 4, no. 11 (September 17, 2014): 2259–69. https://doi.org/10.1534/g3.114.012922.Full Text Link to Item
-
Muller, Ludo A. H., and John H. McCusker. “Nature and distribution of large sequence polymorphisms in Saccharomyces cerevisiae.” Fems Yeast Res 11, no. 7 (November 2011): 587–94. https://doi.org/10.1111/j.1567-1364.2011.00748.x.Full Text Link to Item
-
Muller, L. A. H., J. E. Lucas, D. R. Georgianna, and J. H. McCusker. “Genome-wide association analysis of clinical vs. nonclinical origin provides insights into Saccharomyces cerevisiae pathogenesis.” Mol Ecol 20, no. 19 (October 2011): 4085–97. https://doi.org/10.1111/j.1365-294X.2011.05225.x.Full Text Link to Item
-
Esberg, Anders, Ludo A. H. Muller, and John H. McCusker. “Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93.” Plos One 6, no. 9 (2011): e25211. https://doi.org/10.1371/journal.pone.0025211.Full Text Link to Item
-
Kingsbury, Joanne M., and John H. McCusker. “Fungal homoserine kinase (thr1Delta) mutants are attenuated in virulence and die rapidly upon threonine starvation and serum incubation.” Eukaryot Cell 9, no. 5 (May 2010): 729–37. https://doi.org/10.1128/EC.00045-10.Full Text Link to Item
-
Kingsbury, Joanne M., and John H. McCusker. “Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants.” Eukaryot Cell 9, no. 5 (May 2010): 717–28. https://doi.org/10.1128/EC.00044-10.Full Text Link to Item
-
Kingsbury, Joanne M., and John H. McCusker. “Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2{Delta}) mutants is influenced by the carbon source and rapamycin.” Microbiology (Reading) 156, no. Pt 3 (March 2010): 929–39. https://doi.org/10.1099/mic.0.034348-0.Full Text Open Access Copy Link to Item
-
Argueso, Juan Lucas, Marcelo F. Carazzolle, Piotr A. Mieczkowski, Fabiana M. Duarte, Osmar V. C. Netto, Silvia K. Missawa, Felipe Galzerani, et al. “Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.” Genome Res 19, no. 12 (December 2009): 2258–70. https://doi.org/10.1101/gr.091777.109.Full Text Link to Item
-
Muller, Ludo A. H., and John H. McCusker. “Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments.” Mol Ecol 18, no. 13 (July 2009): 2779–86. https://doi.org/10.1111/j.1365-294X.2009.04234.x.Full Text Link to Item
-
Muller, Ludo A. H., and John H. McCusker. “A multispecies-based taxonomic microarray reveals interspecies hybridization and introgression in Saccharomyces cerevisiae.” Fems Yeast Res 9, no. 1 (February 2009): 143–52. https://doi.org/10.1111/j.1567-1364.2008.00464.x.Full Text Link to Item
-
Sinha, Himanshu, Lior David, Renata C. Pascon, Sandra Clauder-Münster, Sujatha Krishnakumar, Michelle Nguyen, Getao Shi, et al. “Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast.” Genetics 180, no. 3 (November 2008): 1661–70. https://doi.org/10.1534/genetics.108.092932.Full Text Link to Item
-
Kingsbury, Joanne M., and John H. McCusker. “Threonine biosynthetic genes are essential in Cryptococcus neoformans.” Microbiology (Reading) 154, no. Pt 9 (September 2008): 2767–75. https://doi.org/10.1099/mic.0.2008/019729-0.Full Text Link to Item
-
Wei, Wu, John H. McCusker, Richard W. Hyman, Ted Jones, Ye Ning, Zhiwei Cao, Zhenglong Gu, et al. “Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789.” Proc Natl Acad Sci U S A 104, no. 31 (July 31, 2007): 12825–30. https://doi.org/10.1073/pnas.0701291104.Full Text Link to Item
-
Kingsbury, Joanne M., Alan L. Goldstein, and John H. McCusker. “Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo.” Eukaryot Cell 5, no. 5 (May 2006): 816–24. https://doi.org/10.1128/EC.5.5.816-824.2006.Full Text Link to Item
-
Sinha, H., B. P. Nicholson, L. M. Steinmetz, and J. H. McCusker. “Complex genetic interactions in a quantitative trait locus.” Plos Genetics 2, no. 2 (February 1, 2006). https://doi.org/10.1371/journal.pgen.0020013.Full Text
-
Sinha, Himanshu, Bradly P. Nicholson, Lars M. Steinmetz, and John H. McCusker. “Complex genetic interactions in a quantitative trait locus.” Plos Genet 2, no. 2 (February 2006): e13. https://doi.org/10.1371/journal.pgen.0020013.Full Text Link to Item
-
Hartzog, Phillip E., Bradly P. Nicholson, and John H. McCusker. “Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae.” Yeast 22, no. 10 (July 30, 2005): 789–98. https://doi.org/10.1002/yea.1245.Full Text Link to Item
-
Malkova, Anna, Johanna Swanson, Miriam German, John H. McCusker, Elizabeth A. Housworth, Franklin W. Stahl, and James E. Haber. “Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII.” Genetics 168, no. 1 (September 2004): 49–63. https://doi.org/10.1534/genetics.104.027961.Full Text Link to Item
-
Pascon, Renata C., Tonya M. Ganous, Joanne M. Kingsbury, Gary M. Cox, and John H. McCusker. “Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence.” Microbiology (Reading) 150, no. Pt 9 (September 2004): 3013–23. https://doi.org/10.1099/mic.0.27235-0.Full Text Link to Item
-
Kingsbury, Joanne M., Zhonghui Yang, Tonya M. Ganous, Gary M. Cox, and John H. McCusker. “Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans.” Eukaryot Cell 3, no. 3 (June 2004): 752–63. https://doi.org/10.1128/EC.3.3.752-763.2004.Full Text Link to Item
-
Kingsbury, Joanne M., Zhonghui Yang, Tonya M. Ganous, Gary M. Cox, and John H. McCusker. “Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 degrees C and in vivo.” Microbiology (Reading) 150, no. Pt 5 (May 2004): 1547–58. https://doi.org/10.1099/mic.0.26928-0.Full Text Link to Item
-
Vorachek-Warren, Mara K., and John H. McCusker. “DsdA (D-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae.” Yeast 21, no. 2 (January 30, 2004): 163–71. https://doi.org/10.1002/yea.1074.Full Text Link to Item
-
Ito-Harashima, Sayoko, and John H. McCusker. “Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae.” Yeast 21, no. 1 (January 15, 2004): 53–61. https://doi.org/10.1002/yea.1057.Full Text Link to Item
-
Kingsbury, J. M., Z. Yang, T. M. Ganous, G. M. Cox, and J. H. McCusker. “Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 °C and in vivo.” Microbiology 150, no. 5 (2004): 1547–58.
-
Yang, Zhonghui, Renata C. Pascon, Andrew Alspaugh, Gary M. Cox, and John H. McCusker. “Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant.” Microbiology (Reading) 148, no. Pt 8 (August 2002): 2617–25. https://doi.org/10.1099/00221287-148-8-2617.Full Text Link to Item
-
Ito-Harashima, Sayoko, Phillip E. Hartzog, Himanshu Sinha, and John H. McCusker. “The tRNA-Tyr gene family of Saccharomyces cerevisiae: agents of phenotypic variation and position effects on mutation frequency.” Genetics 161, no. 4 (August 2002): 1395–1410. https://doi.org/10.1093/genetics/161.4.1395.Full Text Link to Item
-
Steinmetz, Lars M., Himanshu Sinha, Dan R. Richards, Jamie I. Spiegelman, Peter J. Oefner, John H. McCusker, and Ronald W. Davis. “Dissecting the architecture of a quantitative trait locus in yeast.” Nature 416, no. 6878 (March 21, 2002): 326–30. https://doi.org/10.1038/416326a.Full Text Link to Item
-
Cruz, M Cristina, Alan L. Goldstein, Jill R. Blankenship, Maurizio Del Poeta, Dana Davis, Maria E. Cardenas, John R. Perfect, John H. McCusker, and Joseph Heitman. “Calcineurin is essential for survival during membrane stress in Candida albicans.” Embo J 21, no. 4 (February 15, 2002): 546–59. https://doi.org/10.1093/emboj/21.4.546.Full Text Link to Item
-
Yang, Z., R. C. Pascon, J. A. Alspaugh, G. M. Cox, and J. H. McCusker. “Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant.” Microbiology 148, no. 8 (2002): 2617–25.
-
Cruz, M. C., A. L. Goldstein, J. Blankenship, M. Del Poeta, J. R. Perfect, J. H. McCusker, Y. L. Bennani, M. E. Cardenas, and J. Heitman. “Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR.” Antimicrob Agents Chemother 45, no. 11 (November 2001): 3162–70. https://doi.org/10.1128/AAC.45.11.3162-3170.2001.Full Text Link to Item
-
Goldstein, A. L., and J. H. McCusker. “Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment.” Genetics 159, no. 2 (October 2001): 499–513. https://doi.org/10.1093/genetics/159.2.499.Full Text Link to Item
-
McCullough, M. J., K. V. Clemons, C. Farina, J. H. McCusker, and D. A. Stevens. “Erratum: Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method (Journal of Clinical Microbiology (1998) 36:2 (557-562)).” Journal of Clinical Microbiology 38, no. 3 (January 1, 2000): 1311. https://doi.org/10.1128/jcm.38.3.1311-1311.2000.Full Text
-
Goldstein, A. L., and J. H. McCusker. “Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae.” Yeast 15, no. 14 (October 1999): 1541–53. https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K.Full Text Link to Item
-
Goldstein, A. L., X. Pan, and J. H. McCusker. “Erratum: Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae (Yeast (1999) 15 (507-511)).” Yeast 15, no. 12 (September 15, 1999): 1297. https://doi.org/10.1002/(SICI)1097-0061(19990915)15:12<1297::AID-YEA471>3.0.CO;2-9.Full Text
-
Goldstein, A. L., X. Pan, and J. H. McCusker. “Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae (vol 15, pg 507, 1999).” Yeast 15, no. 12 (September 15, 1999): 1297–1297.Link to Item
-
Goldstein, A. L., X. Pan, and J. H. McCusker. “Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae.” Yeast 15, no. 6 (April 1999): 507–11. https://doi.org/10.1002/(SICI)1097-0061(199904)15:6<507::AID-YEA369>3.0.CO;2-P.Full Text Link to Item
-
Winzeler, E. A., B. Lee, J. H. McCusker, and R. W. Davis. “Whole genome genetic-typing in yeast using high-density oligonucleotide arrays.” Parasitology 118 Suppl (1999): S73–80. https://doi.org/10.1017/s0031182099004047.Full Text Link to Item
-
McCullough, M. J., K. V. Clemons, J. H. McCusker, and D. A. Stevens. “Species identification and virulence attributes of Saccharomyces boulardii (nom. inval.).” J Clin Microbiol 36, no. 9 (September 1998): 2613–17. https://doi.org/10.1128/JCM.36.9.2613-2617.1998.Full Text Link to Item
-
Winzeler, E. A., D. R. Richards, A. R. Conway, A. L. Goldstein, S. Kalman, M. J. McCullough, J. H. McCusker, et al. “Direct allelic variation scanning of the yeast genome.” Science 281, no. 5380 (August 21, 1998): 1194–97. https://doi.org/10.1126/science.281.5380.1194.Full Text Link to Item
-
Finley, D., K. Tanaka, C. Mann, H. Feldmann, M. Hochstrasser, R. Vierstra, S. Johnston, et al. “Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle.” Trends Biochem Sci 23, no. 7 (July 1998): 244–45. https://doi.org/10.1016/s0968-0004(98)01222-5.Full Text Link to Item
-
McCullough, M. J., K. V. Clemons, J. H. McCusker, and D. A. Stevens. “Intergenic transcribed spacer PCR ribotyping for differentiation of Saccharomyces species and interspecific hybrids.” J Clin Microbiol 36, no. 4 (April 1998): 1035–38. https://doi.org/10.1128/JCM.36.4.1035-1038.1998.Full Text Link to Item
-
McCullough, M. J., K. V. Clemons, C. Farina, J. H. McCusker, and D. A. Stevens. “Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method.” J Clin Microbiol 36, no. 2 (February 1998): 557–62. https://doi.org/10.1128/JCM.36.2.557-562.1998.Full Text Link to Item
-
Lashkari, D. A., J. L. DeRisi, J. H. McCusker, A. F. Namath, C. Gentile, S. Y. Hwang, P. O. Brown, and R. W. Davis. “Yeast microarrays for genome wide parallel genetic and gene expression analysis.” Proc Natl Acad Sci U S A 94, no. 24 (November 25, 1997): 13057–62. https://doi.org/10.1073/pnas.94.24.13057.Full Text Link to Item
-
Lashkari, D. A., J. H. McCusker, and R. W. Davis. “Whole genome analysis: experimental access to all genome sequenced segments through larger-scale efficient oligonucleotide synthesis and PCR.” Proc Natl Acad Sci U S A 94, no. 17 (August 19, 1997): 8945–47. https://doi.org/10.1073/pnas.94.17.8945.Full Text Link to Item
-
Clemons, K. V., P. Park, J. H. McCusker, M. J. McCullough, R. W. Davis, and D. A. Stevens. “Application of DNA typing methods and genetic analysis to epidemiology and taxonomy of Saccharomyces isolates.” J Clin Microbiol 35, no. 7 (July 1997): 1822–28. https://doi.org/10.1128/jcm.35.7.1822-1828.1997.Full Text Link to Item
-
Na, S., M. Hincapie, J. H. McCusker, and J. E. Haber. “MOP2 (SLA2) affects the abundance of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae.” J Biol Chem 270, no. 12 (March 24, 1995): 6815–23. https://doi.org/10.1074/jbc.270.12.6815.Full Text Link to Item
-
Byron, J. K., K. V. Clemons, J. H. McCusker, R. W. Davis, and D. A. Stevens. “Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice.” Infect Immun 63, no. 2 (February 1995): 478–85. https://doi.org/10.1128/iai.63.2.478-485.1995.Full Text Link to Item
-
McCusker, J. H., K. V. Clemons, D. A. Stevens, and R. W. Davis. “Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae.” Infect Immun 62, no. 12 (December 1994): 5447–55. https://doi.org/10.1128/iai.62.12.5447-5455.1994.Full Text Link to Item
-
Clemons, K. V., J. H. McCusker, R. W. Davis, and D. A. Stevens. “Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae.” J Infect Dis 169, no. 4 (April 1994): 859–67. https://doi.org/10.1093/infdis/169.4.859.Full Text Link to Item
-
McCusker, J. H., K. V. Clemons, D. A. Stevens, and R. W. Davis. “Genetic characterization of pathogenic Saccharomyces cerevisiae isolates.” Genetics 136, no. 4 (April 1994): 1261–69. https://doi.org/10.1093/genetics/136.4.1261.Full Text Link to Item
-
Nelson, S. F., J. H. McCusker, M. A. Sander, Y. Kee, P. Modrich, and P. O. Brown. “Genomic mismatch scanning: a new approach to genetic linkage mapping.” Nat Genet 4, no. 1 (May 1993): 11–18. https://doi.org/10.1038/ng0593-11.Full Text Link to Item
-
McCusker, J. H., M. Yamagishi, J. M. Kolb, and M. Nomura. “Suppressor analysis of temperature-sensitive RNA polymerase I mutations in Saccharomyces cerevisiae: suppression of mutations in a zinc-binding motif by transposed mutant genes.” Mol Cell Biol 11, no. 2 (February 1991): 746–53. https://doi.org/10.1128/mcb.11.2.746-753.1991.Full Text Link to Item
-
McCusker, J. H., and R. W. Davis. “The use of proline as a nitrogen source causes hypersensitivity to, and allows more economical use of 5FOA in Saccharomyces cerevisiae.” Yeast 7, no. 6 (1991): 607–8. https://doi.org/10.1002/yea.320070608.Full Text Link to Item
-
McCusker, J. H., and J. E. Haber. “Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs.” Mol Cell Biol 10, no. 6 (June 1990): 2941–49. https://doi.org/10.1128/mcb.10.6.2941-2949.1990.Full Text Link to Item
-
Balzi, E., W. Chen, E. Capieaux, J. H. McCusker, J. E. Haber, and A. Goffeau. “The suppressor gene scll+ of Saccharomyces cerevisiae is essential for growth.” Gene 89, no. 1 (April 30, 1990): 151. https://doi.org/10.1016/0378-1119(90)90219-H.Full Text
-
Balzi, E., W. N. Chen, E. Capieaux, J. H. McCusker, J. E. Haber, and A. Goffeau. “The suppressor gene scl1+ of Saccharomyces cerevisiae is essential for growth.” Gene 83, no. 2 (November 30, 1989): 271–79. https://doi.org/10.1016/0378-1119(89)90113-3.Full Text Link to Item
-
Ramirez, J. A., V. Vacata, J. H. McCusker, J. E. Haber, R. K. Mortimer, W. G. Owen, and H. Lecar. “ATP-sensitive K+ channels in a plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae.” Proc Natl Acad Sci U S A 86, no. 20 (October 1989): 7866–70. https://doi.org/10.1073/pnas.86.20.7866.Full Text Link to Item
-
McCusker, J. H., and J. E. Haber. “crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants.” Genetics 119, no. 2 (June 1988): 317–27. https://doi.org/10.1093/genetics/119.2.317.Full Text Link to Item
-
McCusker, J. H., and J. E. Haber. “Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae.” Genetics 119, no. 2 (June 1988): 303–15. https://doi.org/10.1093/genetics/119.2.303.Full Text Link to Item
-
McCusker, J. H., D. S. Perlin, and J. E. Haber. “Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae.” Mol Cell Biol 7, no. 11 (November 1987): 4082–88. https://doi.org/10.1128/mcb.7.11.4082-4088.1987.Full Text Link to Item
-
Haber, J. E., B. Weiffenbach, D. T. Rogers, J. McCusker, and L. B. Rowe. “Chromosomal rearrangements accompanying yeast mating-type switching: evidence for a gene-conversion model.” Cold Spring Harb Symp Quant Biol 45 Pt 2 (1981): 991–1002. https://doi.org/10.1101/sqb.1981.045.01.115.Full Text Link to Item
-
Haber, J. E., D. T. Rogers, and J. H. McCusker. “Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination.” Cell 22, no. 1 Pt 1 (November 1980): 277–89. https://doi.org/10.1016/0092-8674(80)90175-0.Full Text Link to Item
-
Liras, P., J. McCusker, S. Mascioli, and J. E. Haber. “Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis.” Genetics 88, no. 4 Pt 1 (April 1978): 651–71.Link to Item
-
Liras, P., J. McCusker, S. Mascioli, and J. E. Haber. “Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis.” Genetics Vol.88, no. 4 (I) (January 1, 1978): 651–71.
-
McCusker, J. H., and J. E. Haber. “Efficient sporulation of yeast in media buffered near pH6.” J Bacteriol 132, no. 1 (October 1977): 180–85. https://doi.org/10.1128/jb.132.1.180-185.1977.Full Text Link to Item
-
-
Conference Papers
-
Goldstein, A. L., and J. H. McCusker. “Fungal survival factors: analysis of in vivo carbon source utilization using clinically derived strains of Saccharomyces cerevisiae in a mouse model of systemic infection.” In Yeast, 18:S309–S309. JOHN WILEY & SONS LTD, 2001.Link to Item
-
-
Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.