Neil Jonathan Freedman
Professor of Medicine

Our work focuses on atherosclerosis-related signal transduction and the genetic bases of atherosclerosis and vein graft failure, both in vitro and in vivo. We investigate the regulation of receptor protein tyrosine kinases by G protein-coupled receptor kinases (GRKs), and the role of GRKs and β-arrestins in atherosclerosis; the role of tumor necrosis factor and its receptors in atherosclerosis; and the role of the dual Rho-GEF kalirin in atherosclerosis. For in vivo modeling of atherosclerosis and neointimal hyperplasia, we use mouse carotid artery bypass grafting with either veins or arteries from gene-deleted or congenic wild type mice, as well as aortic atherosclerosis studies and bone marrow transplantation. To study receptor phosphorylation, signal transduction, and intracellular trafficking, we employ primary smooth muscle cells, endothelial cells, and macrophages derived from knockout mice or treated with RNA interference.

Key Words: atherosclerosis, G protein-coupled receptor kinases, arrestins, desensitization, phosphorylation, platelet-derived growth factor receptors, receptor protein tyrosine kinases, smooth muscle cells, neointimal hyperplasia, Rho-GEF.

Current Appointments & Affiliations

Contact Information

Some information on this profile has been compiled automatically from Duke databases and external sources. (Our About page explains how this works.) If you see a problem with the information, please write to Scholars@Duke and let us know. We will reply promptly.