Overview
My research is in String Theory, the most ambitious attempt yet at a comprehensive theory of the fundamental structure of the universe. In some (rather imprecise) sense, string theory replaces the particles that form the fundamental building blocks for conventional theories (the fields, or wave phenomena, we observe are obtained starting from particles when we apply the principles of quantum mechanics) with objects that are not point-like but extended in one dimension – strings. At present, the theory is not precisely formulated, as we still seek the conceptual and technical tools needed. The structures we do have in hand suggest that, when formulated precisely, the theory will provide a consistent framework encompassing the two greatest achievements of twentieth century theoretical physics: Einstein’s general theory of relativity, which describes gravitational forces objects in terms of deformations of the geometry of spacetime; and quantum mechanics, a model of fundamental physics in which microscopic objects exhibit the properties of particles under some circumstances and those of waves under others. Both of these theories have been tested with extraordinary precision and yield predictions that agree with our observations of the physical universe. Relativistic effects are manifest at the largest scales in the universe, in the interactions of stars, galaxies, etc. The differences between a quantum mechanical description and a classical nineteenth century description of these objects are so small they can be neglected. Quantum effects dominate at the smallest scales – atoms and their constituents. In this realm, the effects of gravitation can be completely neglected. And yet, under extreme conditions of density, such as may obtain in the final instant of the evaporation of a black hole, both kinds of effects are important. A universal theory of physics thus requires a consistent quantum theory of gravity. Thus far, string theory is the most promising candidate for producing such a theory. Investigations of this theory have already yielded rich insights, and continue to produce more.
My own research centers on the crucial role played in the theory by geometric structures. There is an obvious role for geometry in a theory that incorporates gravitation, which as discussed above is tantamount to the geometry of spacetime. Related to this are several other, less obvious, geometric structures that play an important role in determining the physics of the theory. Indeed, advances in mathematics and in the physics of string theory have often been closely linked. An example of how the two fields have interacted in a surprising way is the ongoing story of mirror symmetry.
Current Appointments & Affiliations
Professor of Physics
·
2014 - Present
Physics,
Trinity College of Arts & Sciences
Professor in the Department of Mathematics
·
2014 - Present
Mathematics,
Trinity College of Arts & Sciences
Recent Publications
Fixed points of (0,2) Landau-Ginzburg renormalization group flows and the chiral algebra
Journal Article Journal of High Energy Physics · September 1, 2022 We discuss renormalization group flows in two-dimensional quantum field theories with (0,2) supersymmetry. We focus on theories with UV described by a Landau-Ginzburg Lagrangian and use the chiral algebra to constrain the IR dynamics. We present examples w ... Full text Cite(0,2) hybrid models
Journal Article Journal of High Energy Physics · September 1, 2018 We introduce a class of (0,2) superconformal field theories based on hybrid geometries, generalizing various known constructions. We develop techniques for the computation of the complete massless spectrum when the theory can be interpreted as determining ... Full text Open Access CiteSU(N) Transitions in M-Theory on Calabi–Yau Fourfolds and Background Fluxes
Journal Article Communications in Mathematical Physics · April 1, 2017 We study M-theory on a Calabi–Yau fourfold with a smooth surface S of AN–1 singularities. The resulting three-dimensional theory has a N= 2 SU(N) gauge theory sector, which we obtain from a twisted dimensional reduction of a seven-dimensional N= 1 SU(N) ga ... Full text CiteRecent Grants
Moduli Spaces of String Vacua with Four Supersymmetries
ResearchPrincipal Investigator · Awarded by National Science Foundation · 2015 - 2019A Regional Conference Series in Mathematical String Theory
ConferencePrincipal Investigator · Awarded by National Science Foundation · 2013 - 2019Integrative Middle School STEM Teacher Preparation: A Collaborative Capacity Building Project at Duke University
Inst. Training Prgm or CMECo Investigator · Awarded by National Science Foundation · 2014 - 2017View All Grants
Education, Training & Certifications
Harvard University ·
1991
Ph.D.
Harvard University ·
1988
M.A.