## SU(N) Transitions in M-Theory on Calabi–Yau Fourfolds and Background Fluxes

We study M-theory on a Calabi–Yau fourfold with a smooth surface S of AN–1 singularities. The resulting three-dimensional theory has a N= 2 SU(N) gauge theory sector, which we obtain from a twisted dimensional reduction of a seven-dimensional N= 1 SU(N) gauge theory on the surface S. A variant of the Vafa–Witten equations governs the moduli space of the gauge theory, which—for a trivial SU(N) principal bundle over S—admits a Coulomb and a Higgs branch. In M-theory these two gauge theory branches arise from a resolution and a deformation to smooth Calabi–Yau fourfolds, respectively. We find that the deformed Calabi–Yau fourfold associated to the Higgs branch requires for consistency a non-trivial four-form background flux in M-theory. The flat directions of the flux-induced superpotential are in agreement with the gauge theory prediction for the moduli space of the Higgs branch. We illustrate our findings with explicit examples that realize the Coulomb and Higgs phase transition in Calabi–Yau fourfolds embedded in weighted projective spaces. We generalize and enlarge this class of examples to Calabi–Yau fourfolds embedded in toric varieties with an AN–1 singularity in codimension two.

### Duke Scholars

##### Altmetric Attention Stats

##### Dimensions Citation Stats

## Published In

## DOI

## EISSN

## ISSN

## Publication Date

## Volume

## Issue

## Start / End Page

## Related Subject Headings

- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics

### Citation

*Communications in Mathematical Physics*,

*351*(2), 837–871. https://doi.org/10.1007/s00220-016-2741-5

*Communications in Mathematical Physics*351, no. 2 (April 1, 2017): 837–71. https://doi.org/10.1007/s00220-016-2741-5.

*Communications in Mathematical Physics*, vol. 351, no. 2, Apr. 2017, pp. 837–71.

*Scopus*, doi:10.1007/s00220-016-2741-5.

## Published In

## DOI

## EISSN

## ISSN

## Publication Date

## Volume

## Issue

## Start / End Page

## Related Subject Headings

- Mathematical Physics
- 5107 Particle and high energy physics
- 4904 Pure mathematics
- 4902 Mathematical physics
- 0206 Quantum Physics
- 0105 Mathematical Physics
- 0101 Pure Mathematics