Skip to main content
Journal cover image

Combinatorial rules of precursor specification underlying olfactory neuron diversity.

Publication ,  Journal Article
Li, Q; Ha, TS; Okuwa, S; Wang, Y; Wang, Q; Millard, SS; Smith, DP; Volkan, PC
Published in: Current biology : CB
December 2013

Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown.Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner.We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Current biology : CB

DOI

EISSN

1879-0445

ISSN

0960-9822

Publication Date

December 2013

Volume

23

Issue

24

Start / End Page

2481 / 2490

Related Subject Headings

  • Transcription Factors
  • Smell
  • Receptors, Odorant
  • Models, Biological
  • Drosophila Proteins
  • Drosophila
  • Developmental Biology
  • Arthropod Antennae
  • Animals
  • 52 Psychology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Li, Q., Ha, T. S., Okuwa, S., Wang, Y., Wang, Q., Millard, S. S., … Volkan, P. C. (2013). Combinatorial rules of precursor specification underlying olfactory neuron diversity. Current Biology : CB, 23(24), 2481–2490. https://doi.org/10.1016/j.cub.2013.10.053
Li, Qingyun, Tal Soo Ha, Sumie Okuwa, Yiping Wang, Qian Wang, S Sean Millard, Dean P. Smith, and Pelin Cayirlioglu Volkan. “Combinatorial rules of precursor specification underlying olfactory neuron diversity.Current Biology : CB 23, no. 24 (December 2013): 2481–90. https://doi.org/10.1016/j.cub.2013.10.053.
Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, et al. Combinatorial rules of precursor specification underlying olfactory neuron diversity. Current biology : CB. 2013 Dec;23(24):2481–90.
Li, Qingyun, et al. “Combinatorial rules of precursor specification underlying olfactory neuron diversity.Current Biology : CB, vol. 23, no. 24, Dec. 2013, pp. 2481–90. Epmc, doi:10.1016/j.cub.2013.10.053.
Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC. Combinatorial rules of precursor specification underlying olfactory neuron diversity. Current biology : CB. 2013 Dec;23(24):2481–2490.
Journal cover image

Published In

Current biology : CB

DOI

EISSN

1879-0445

ISSN

0960-9822

Publication Date

December 2013

Volume

23

Issue

24

Start / End Page

2481 / 2490

Related Subject Headings

  • Transcription Factors
  • Smell
  • Receptors, Odorant
  • Models, Biological
  • Drosophila Proteins
  • Drosophila
  • Developmental Biology
  • Arthropod Antennae
  • Animals
  • 52 Psychology