Skip to main content
Journal cover image

Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility.

Publication ,  Journal Article
Dismuke, WM; Liang, J; Overby, DR; Stamer, WD
Published in: Exp Eye Res
March 2014

The contractility status of trabecular meshwork (TM) cells influences aqueous humor outflow resistance and intraocular pressure. Using human TM cells as a model, the goal of the present study was to examine concentration-response relationships of two prototypical molecules, nitric oxide (NO) and endothelin-1 (ET-1), known to differentially influence vascular smooth muscle contractility. Efficacy of ET-1, two NO donors (DETA-NO and SNP) and a cGMP analog (8-Br-cGMP) were assessed using two complementary methods: functionally in a gel contraction assay and biochemically using a myosin light chain phosphorylation assay. The NO donors DETA-NO and SNP dose dependently relaxed cultured human TM cells (EC50 for DETA-NO = 6.0 ± 2.4 μM, SNP = 12.6 ± 8.8 μM), with maximum effects at 100 μM. Interestingly, at concentrations of NO donors above 100 μM, the relaxing effect was lost. Relaxation caused by DETA-NO (100 μM) was dose dependently blocked by the soluble guanylate cyclase specific inhibitor ODQ (IC50 = 460 ± 190 nM). In contrast to the NO donors, treatment of cells with the cGMP analog, 8-Br-cGMP produced the largest relaxation (109.4%) that persisted at high concentrations (EC50 = 110 ± 40 μM). ET-1 caused a dose-dependent contraction of human TM cells (EC50 = 1.5 ± 0.5 pM), with maximum effect at 100 pM (56.1%) and this contraction was reversed by DETA-NO (100 μM). Consistent with functional data, phosphorylation status of myosin light chain was dose dependently reduced with DETA-NO, and increased with ET-1. Together, data show that TM cells rapidly change their contractility status over a wide dynamic range, well suited for the regulation of outflow resistance and intraocular pressure.

Duke Scholars

Published In

Exp Eye Res

DOI

EISSN

1096-0007

Publication Date

March 2014

Volume

120

Start / End Page

28 / 35

Location

England

Related Subject Headings

  • Triazenes
  • Trabecular Meshwork
  • Tissue Donors
  • Quinoxalines
  • Phosphorylation
  • Oxadiazoles
  • Ophthalmology & Optometry
  • Nitroprusside
  • Nitric Oxide Donors
  • Myosin Light Chains
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dismuke, W. M., Liang, J., Overby, D. R., & Stamer, W. D. (2014). Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Exp Eye Res, 120, 28–35. https://doi.org/10.1016/j.exer.2013.12.012
Dismuke, W Michael, Jin Liang, Darryl R. Overby, and W Daniel Stamer. “Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility.Exp Eye Res 120 (March 2014): 28–35. https://doi.org/10.1016/j.exer.2013.12.012.
Dismuke WM, Liang J, Overby DR, Stamer WD. Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Exp Eye Res. 2014 Mar;120:28–35.
Dismuke, W. Michael, et al. “Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility.Exp Eye Res, vol. 120, Mar. 2014, pp. 28–35. Pubmed, doi:10.1016/j.exer.2013.12.012.
Dismuke WM, Liang J, Overby DR, Stamer WD. Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Exp Eye Res. 2014 Mar;120:28–35.
Journal cover image

Published In

Exp Eye Res

DOI

EISSN

1096-0007

Publication Date

March 2014

Volume

120

Start / End Page

28 / 35

Location

England

Related Subject Headings

  • Triazenes
  • Trabecular Meshwork
  • Tissue Donors
  • Quinoxalines
  • Phosphorylation
  • Oxadiazoles
  • Ophthalmology & Optometry
  • Nitroprusside
  • Nitric Oxide Donors
  • Myosin Light Chains