Skip to main content
Journal cover image

Defects in Cu(In,Ga)Se 2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance

Publication ,  Journal Article
Cao, Q; Gunawan, O; Copel, M; Reuter, KB; Chey, SJ; Deline, VR; Mitzi, DB
Published in: Advanced Energy Materials
October 1, 2011

Understanding defects in Cu(In,Ga)(Se,S) 2 (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS fi lms were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga) Cu) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga) Cu defects on device PV performance is also established. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Advanced Energy Materials

DOI

EISSN

1614-6840

ISSN

1614-6832

Publication Date

October 1, 2011

Volume

1

Issue

5

Start / End Page

845 / 853

Related Subject Headings

  • 4016 Materials engineering
  • 3403 Macromolecular and materials chemistry
  • 0915 Interdisciplinary Engineering
  • 0912 Materials Engineering
  • 0303 Macromolecular and Materials Chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cao, Q., Gunawan, O., Copel, M., Reuter, K. B., Chey, S. J., Deline, V. R., & Mitzi, D. B. (2011). Defects in Cu(In,Ga)Se 2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials, 1(5), 845–853. https://doi.org/10.1002/aenm.201100344
Cao, Q., O. Gunawan, M. Copel, K. B. Reuter, S. J. Chey, V. R. Deline, and D. B. Mitzi. “Defects in Cu(In,Ga)Se 2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance.” Advanced Energy Materials 1, no. 5 (October 1, 2011): 845–53. https://doi.org/10.1002/aenm.201100344.
Cao Q, Gunawan O, Copel M, Reuter KB, Chey SJ, Deline VR, et al. Defects in Cu(In,Ga)Se 2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials. 2011 Oct 1;1(5):845–53.
Cao, Q., et al. “Defects in Cu(In,Ga)Se 2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance.” Advanced Energy Materials, vol. 1, no. 5, Oct. 2011, pp. 845–53. Scopus, doi:10.1002/aenm.201100344.
Cao Q, Gunawan O, Copel M, Reuter KB, Chey SJ, Deline VR, Mitzi DB. Defects in Cu(In,Ga)Se 2 chalcopyrite semiconductors: A comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials. 2011 Oct 1;1(5):845–853.
Journal cover image

Published In

Advanced Energy Materials

DOI

EISSN

1614-6840

ISSN

1614-6832

Publication Date

October 1, 2011

Volume

1

Issue

5

Start / End Page

845 / 853

Related Subject Headings

  • 4016 Materials engineering
  • 3403 Macromolecular and materials chemistry
  • 0915 Interdisciplinary Engineering
  • 0912 Materials Engineering
  • 0303 Macromolecular and Materials Chemistry