Lenard-Balescu calculations and classical molecular dynamics simulations of electrical and thermal conductivities of hydrogen plasmas
We present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from our particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations. Comparison between quantum Lenard-Balescu and classical Lenard-Balescu for conductivities then allows us to both validate and critique the use of various statistical potentials for the prediction of plasma transport properties. These findings complement our earlier MD/kinetic theory work on temperature equilibration [1], and reach similar conclusions as to which forms of statistical potentials best reproduce true quantum behavior.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 5106 Nuclear and plasma physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 5106 Nuclear and plasma physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics