
Tough shape-memory polymer-fiber composites
This study describes a multi-faceted materials selection problem that ultimately produces a new class of polymer-fiber composites with failure strains of near 400% and ultimate tensile strengths (UTS's) up to 20 MPa. Independent control of the rubbery modulus (proportional to the compressive force the composite can apply) is demonstrated by altering the crosslinker density of the polymer matrix and the fiber weave. The stress the composite can withstand can be modified with changing fiber material and weave geometry. The resulting SMP-fiber composites can be designed with glass transition temperatures (T
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 4017 Mechanical engineering
- 4016 Materials engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0906 Electrical and Electronic Engineering
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Materials
- 4017 Mechanical engineering
- 4016 Materials engineering
- 4005 Civil engineering
- 0913 Mechanical Engineering
- 0912 Materials Engineering
- 0906 Electrical and Electronic Engineering