Skip to main content
Journal cover image

Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations.

Publication ,  Journal Article
Nikolova, EN; Bascom, GD; Andricioaei, I; Al-Hashimi, HM
Published in: Biochemistry
October 30, 2012

Sequence-specific DNA flexibility plays a key role in a variety of cellular interactions that are critical for gene packaging, expression, and regulation, yet few studies have experimentally explored the sequence dependence of DNA dynamics that occur on biologically relevant time scales. Here, we use nuclear magnetic resonance (NMR) carbon spin relaxation combined with molecular dynamics (MD) simulations to examine the picosecond to nanosecond dynamics in a variety of dinucleotide steps as well as in varying length homopolymeric A(n)·T(n) repeats (A(n)-tracts, where n = 2, 4, or 6) that exhibit unusual structural and mechanical properties. We extend the NMR spin relaxation time scale sensitivity deeper into the nanosecond regime by using glycerol and a longer DNA duplex to slow overall tumbling. Our studies reveal a structurally unique A-tract core (for n > 3) that is uniformly rigid, flanked by junction steps that show increasing sugar flexibility with A-tract length. High sugar mobility is observed at pyrimidine residues at the A-tract junctions, which is encoded at the dinucleotide level (CA, TG, and CG steps) and increases with A-tract length. The MD simulations reproduce many of these trends, particularly the overall rigidity of A-tract base and sugar sites, and suggest that the sugar-backbone dynamics could involve transitions in sugar pucker and phosphate backbone BI ↔ BII equilibria. Our results reinforce an emerging view that sequence-specific DNA flexibility can be imprinted in dynamics occurring deep within the nanosecond time regime that is difficult to characterize experimentally at the atomic level. Such large-amplitude sequence-dependent backbone fluctuations might flag the genome for specific DNA recognition.

Duke Scholars

Published In

Biochemistry

DOI

EISSN

1520-4995

Publication Date

October 30, 2012

Volume

51

Issue

43

Start / End Page

8654 / 8664

Location

United States

Related Subject Headings

  • Pyrimidines
  • Purines
  • Nucleotides
  • Nucleic Acid Conformation
  • Nuclear Magnetic Resonance, Biomolecular
  • Molecular Dynamics Simulation
  • DNA
  • Biochemistry & Molecular Biology
  • Base Sequence
  • 3404 Medicinal and biomolecular chemistry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Nikolova, E. N., Bascom, G. D., Andricioaei, I., & Al-Hashimi, H. M. (2012). Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations. Biochemistry, 51(43), 8654–8664. https://doi.org/10.1021/bi3009517
Nikolova, Evgenia N., Gavin D. Bascom, Ioan Andricioaei, and Hashim M. Al-Hashimi. “Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations.Biochemistry 51, no. 43 (October 30, 2012): 8654–64. https://doi.org/10.1021/bi3009517.
Nikolova, Evgenia N., et al. “Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations.Biochemistry, vol. 51, no. 43, Oct. 2012, pp. 8654–64. Pubmed, doi:10.1021/bi3009517.
Journal cover image

Published In

Biochemistry

DOI

EISSN

1520-4995

Publication Date

October 30, 2012

Volume

51

Issue

43

Start / End Page

8654 / 8664

Location

United States

Related Subject Headings

  • Pyrimidines
  • Purines
  • Nucleotides
  • Nucleic Acid Conformation
  • Nuclear Magnetic Resonance, Biomolecular
  • Molecular Dynamics Simulation
  • DNA
  • Biochemistry & Molecular Biology
  • Base Sequence
  • 3404 Medicinal and biomolecular chemistry