Skip to main content
Journal cover image

NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P.

Publication ,  Journal Article
Koutmou, KS; Casiano-Negroni, A; Getz, MM; Pazicni, S; Andrews, AJ; Penner-Hahn, JE; Al-Hashimi, HM; Fierke, CA
Published in: Proc Natl Acad Sci U S A
February 9, 2010

Functionally critical metals interact with RNA through complex coordination schemes that are currently difficult to visualize at the atomic level under solution conditions. Here, we report a new approach that combines NMR and XAS to resolve and characterize metal binding in the most highly conserved P4 helix of ribonuclease P (RNase P), the ribonucleoprotein that catalyzes the divalent metal ion-dependent maturation of the 5' end of precursor tRNA. Extended X-ray absorption fine structure (EXAFS) spectroscopy reveals that the Zn(2+) bound to a P4 helix mimic is six-coordinate, with an average Zn-O/N bond distance of 2.08 A. The EXAFS data also show intense outer-shell scattering indicating that the zinc ion has inner-shell interactions with one or more RNA ligands. NMR Mn(2+) paramagnetic line broadening experiments reveal strong metal localization at residues corresponding to G378 and G379 in B. subtilis RNase P. A new "metal cocktail" chemical shift perturbation strategy involving titrations with , Zn(2+), and confirm an inner-sphere metal interaction with residues G378 and G379. These studies present a unique picture of how metals coordinate to the putative RNase P active site in solution, and shed light on the environment of an essential metal ion in RNase P. Our experimental approach presents a general method for identifying and characterizing inner-sphere metal ion binding sites in RNA in solution.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Proc Natl Acad Sci U S A

DOI

EISSN

1091-6490

Publication Date

February 9, 2010

Volume

107

Issue

6

Start / End Page

2479 / 2484

Location

United States

Related Subject Headings

  • Zinc
  • Spectrometry, X-Ray Emission
  • Ribonuclease P
  • Protein Binding
  • Nucleic Acid Conformation
  • Mutation
  • Metals
  • Magnetic Resonance Spectroscopy
  • Glycine
  • Catalytic Domain
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Koutmou, K. S., Casiano-Negroni, A., Getz, M. M., Pazicni, S., Andrews, A. J., Penner-Hahn, J. E., … Fierke, C. A. (2010). NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P. Proc Natl Acad Sci U S A, 107(6), 2479–2484. https://doi.org/10.1073/pnas.0906319107
Koutmou, Kristin S., Anette Casiano-Negroni, Melissa M. Getz, Samuel Pazicni, Andrew J. Andrews, James E. Penner-Hahn, Hashim M. Al-Hashimi, and Carol A. Fierke. “NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P.Proc Natl Acad Sci U S A 107, no. 6 (February 9, 2010): 2479–84. https://doi.org/10.1073/pnas.0906319107.
Koutmou KS, Casiano-Negroni A, Getz MM, Pazicni S, Andrews AJ, Penner-Hahn JE, et al. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2479–84.
Koutmou, Kristin S., et al. “NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P.Proc Natl Acad Sci U S A, vol. 107, no. 6, Feb. 2010, pp. 2479–84. Pubmed, doi:10.1073/pnas.0906319107.
Koutmou KS, Casiano-Negroni A, Getz MM, Pazicni S, Andrews AJ, Penner-Hahn JE, Al-Hashimi HM, Fierke CA. NMR and XAS reveal an inner-sphere metal binding site in the P4 helix of the metallo-ribozyme ribonuclease P. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2479–2484.
Journal cover image

Published In

Proc Natl Acad Sci U S A

DOI

EISSN

1091-6490

Publication Date

February 9, 2010

Volume

107

Issue

6

Start / End Page

2479 / 2484

Location

United States

Related Subject Headings

  • Zinc
  • Spectrometry, X-Ray Emission
  • Ribonuclease P
  • Protein Binding
  • Nucleic Acid Conformation
  • Mutation
  • Metals
  • Magnetic Resonance Spectroscopy
  • Glycine
  • Catalytic Domain