Mapping nonlinear receptive field structure in primate retina at single cone resolution.
The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Location
Related Subject Headings
- Retinal Cone Photoreceptor Cells
- Retina
- Photic Stimulation
- Neurons
- Neuroanatomical Tract-Tracing Techniques
- Models, Neurological
- Macaca
- Computer Simulation
- Animals
- 42 Health sciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Location
Related Subject Headings
- Retinal Cone Photoreceptor Cells
- Retina
- Photic Stimulation
- Neurons
- Neuroanatomical Tract-Tracing Techniques
- Models, Neurological
- Macaca
- Computer Simulation
- Animals
- 42 Health sciences