Skip to main content

Pharmacologically directed design of the dose rate and schedule of 2',2'-difluorodeoxycytidine (Gemcitabine) administration in leukemia.

Publication ,  Journal Article
Grunewald, R; Kantarjian, H; Keating, MJ; Abbruzzese, J; Tarassoff, P; Plunkett, W
Published in: Cancer Res
November 1, 1990

The objective of this study was to determine the dose rate of 2',2'-difluorodeoxycytidine (dFdC) that maximizes the accumulation of the active 5'-triphosphate (dFdCTP) in circulating leukemia cells during therapy. The investigational approach was to evaluate the relationship between plasma dFdC and the accumulation of dFdCTP by circulating leukemia cells during infusion of different dFdC dose rates in the same individuals. Four patients with relapsed leukemia were treated weekly with two or three consecutive infusions of 800 mg/m2, the first administered over 1 h, the second over 2 h, and the third over 3 h. Two patients, one with acute myelogenous leukemia and one with acute lymphocytic leukemia, received all three infusions, but thrombocytopenia prohibited infusion of the third dose to two patients with chronic lymphocytic leukemia. The average steady-state plasma dFdC levels, achieved within 15 min after the infusion began, were 43.8 microM during infusion of 800 mg/m2/h, 9.4 microM during infusion of 400 mg/m2/h, and 5.6 microM at 267 mg/m2/h. The median area under the concentration times time curve of dFdCTP in leukemia cells during infusion was increased 2.3- and 5.1-fold for the 2- and 3-h infusions, respectively. In vitro incubations of leukemia cells from the four patients with 2.5-100 microM dFdC for 1 h showed that the maximum cellular accumulation of dFdCTP was produced by 15-20 microM dFdC. We conclude that a dose rate of greater than 400 mg/m2/h was required to achieve plasma dFdC levels that supported the maximum rate of dFdCTP accumulation in leukemia cells.

Duke Scholars

Published In

Cancer Res

ISSN

0008-5472

Publication Date

November 1, 1990

Volume

50

Issue

21

Start / End Page

6823 / 6826

Location

United States

Related Subject Headings

  • Oncology & Carcinogenesis
  • Neoplastic Cells, Circulating
  • Middle Aged
  • Male
  • Leukemia
  • Infusions, Intravenous
  • Humans
  • Gemcitabine
  • Female
  • Drug Administration Schedule
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Grunewald, R., Kantarjian, H., Keating, M. J., Abbruzzese, J., Tarassoff, P., & Plunkett, W. (1990). Pharmacologically directed design of the dose rate and schedule of 2',2'-difluorodeoxycytidine (Gemcitabine) administration in leukemia. Cancer Res, 50(21), 6823–6826.
Grunewald, R., H. Kantarjian, M. J. Keating, J. Abbruzzese, P. Tarassoff, and W. Plunkett. “Pharmacologically directed design of the dose rate and schedule of 2',2'-difluorodeoxycytidine (Gemcitabine) administration in leukemia.Cancer Res 50, no. 21 (November 1, 1990): 6823–26.
Grunewald R, Kantarjian H, Keating MJ, Abbruzzese J, Tarassoff P, Plunkett W. Pharmacologically directed design of the dose rate and schedule of 2',2'-difluorodeoxycytidine (Gemcitabine) administration in leukemia. Cancer Res. 1990 Nov 1;50(21):6823–6.
Grunewald R, Kantarjian H, Keating MJ, Abbruzzese J, Tarassoff P, Plunkett W. Pharmacologically directed design of the dose rate and schedule of 2',2'-difluorodeoxycytidine (Gemcitabine) administration in leukemia. Cancer Res. 1990 Nov 1;50(21):6823–6826.

Published In

Cancer Res

ISSN

0008-5472

Publication Date

November 1, 1990

Volume

50

Issue

21

Start / End Page

6823 / 6826

Location

United States

Related Subject Headings

  • Oncology & Carcinogenesis
  • Neoplastic Cells, Circulating
  • Middle Aged
  • Male
  • Leukemia
  • Infusions, Intravenous
  • Humans
  • Gemcitabine
  • Female
  • Drug Administration Schedule