
Modular self-assembling biomaterials for directing cellular responses.
Self-assembling biomaterials are promising as cell-interactive matrices because they can be constructed in a modular fashion, which enables the independent and simultaneous tuning of several of their physicochemical and biological properties. Such modularity facilitates the optimization of multi-component matrices for use in complex biological environments such as 3-D cell culture or scaffolds for regenerative medicine. This Highlight will discuss recent strategies for producing modular self-assembling biomaterials, with a particular focus on how ligand presentation and matrix mechanics can be controlled in modular ways. In addition, it will discuss key hurdles that remain for employing these materials as cell-interactive scaffolds in biomedical applications, particularly those that relate to how they may interface with the immune system.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences