Reproducibility of Optovue RTVue Optical Coherence Tomography Retinal Thickness Measurements and Conversion to Equivalent Zeiss Stratus Metrics in Diabetic Macular Edema.
PURPOSE: To evaluate the reproducibility of central subfield thickness (CST) and volume measurements from optical coherence tomography (OCT) images obtained with Zeiss Stratus and Optovue RTVue, and formulate equations to convert these measurements from RTVue to 'equivalent' Stratus values. METHODS: Cross-sectional observational study from 309 eyes of 167 participants with diabetes and at least one eye with central-involved diabetic macular edema (DME; Stratus CST ≥ 250 μm) that underwent two replicate Stratus scans followed by two replicate RTVue scans centered on the fovea. RESULTS: The Bland-Altman coefficient of repeatability for relative change in CST (the degree of change that could be expected from measurement variability) was not significantly different on Stratus and RTVue scans (10% and 16%, respectively). The replicate Stratus CST was within 10% of the initial Stratus measurement 93% of the time; the CST conversion equation predicted a Stratus value calculated from the observed RTVue value within 10% of the observed Stratus thickness 91% of the time. Bland-Altman limit of agreement for relative change in CST between measurements observed on different machines was 23%, comparing predicted versus actual Stratus measurement. CONCLUSIONS: RTVue thickness reproducibility appears similar to Stratus. Conversion equations to transform RTVue measurements to Stratus-equivalent values within 10% of the observed Stratus RT are feasible. CST changes greater than 10% when using the same machine or 20% when switching from Stratus to RTVue, after conversion to Stratus equivalents, are likely due to a true change beyond measurement error. TRANSLATIONAL RELEVANCE: Conversion equations to translate central retinal thickness measurements between OCT instruments is critical to clinical trials.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 3212 Ophthalmology and optometry
- 1113 Opthalmology and Optometry
- 0903 Biomedical Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- 3212 Ophthalmology and optometry
- 1113 Opthalmology and Optometry
- 0903 Biomedical Engineering