Skip to main content

Dephosphorylation of the Core Septin, AspB, in a Protein Phosphatase 2A-Dependent Manner Impacts Its Localization and Function in the Fungal Pathogen Aspergillus fumigatus.

Publication ,  Journal Article
Vargas-Muñiz, JM; Renshaw, H; Richards, AD; Waitt, G; Soderblom, EJ; Moseley, MA; Asfaw, Y; Juvvadi, PR; Steinbach, WJ
Published in: Front Microbiol
2016

Septins are a conserved family of GTPases that form hetero-oligomeric complexes and perform diverse functions in higher eukaryotes, excluding plants. Our previous studies in the human fungal pathogen Aspergillus fumigatus revealed that the core septin, AspB, a CDC3 ortholog, is required for septation, conidiation, and conidial cell wall organization. Although AspB is important for these cellular functions, nothing is known about the role of kinases or phosphatases in the posttranslational regulation and localization of septins in A. fumigatus. In this study, we assessed the function of the Gin4 and Cla4 kinases and the PP2A regulatory subunit ParA, in the regulation of AspB using genetic and phosphoproteomic approaches. Gene deletion analyses revealed that Cla4 and ParA are indispensable for hyphal extension, and Gin4, Cla4, and ParA are each required for conidiation and normal septation. While deletion of gin4 resulted in larger interseptal distances and hypervirulence, a phenotype mimicking aspB deletion, deletion of cla4 and parA caused hyperseptation without impacting virulence, indicating divergent roles in regulating septation. Phosphoproteomic analyses revealed that AspB is phosphorylated at five residues in the GTPase domain (S134, S137, S247, T297, and T301) and two residues at its C-terminus (S416 and S461) in the wild-type, Δgin4 and Δcla4 strains. However, concomitant with the differential localization pattern of AspB and hyperseptation in the ΔparA strain, AspB remained phosphorylated at two additional residues, T68 in the N-terminal polybasic region and S447 in the coiled-coil domain. Generation of nonphosphorylatable and phosphomimetic strains surrounding each differentially phosphorylated residue revealed that only AspB (mt) -T68E showed increased interseptal distances, suggesting that dephosphorylation of T68 is important for proper septation. This study highlights the importance of septin phosphorylation/dephosphorylation in the regulation of A. fumigatus hyphal septation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Front Microbiol

DOI

ISSN

1664-302X

Publication Date

2016

Volume

7

Start / End Page

997

Location

Switzerland

Related Subject Headings

  • 3207 Medical microbiology
  • 3107 Microbiology
  • 0605 Microbiology
  • 0503 Soil Sciences
  • 0502 Environmental Science and Management
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Vargas-Muñiz, J. M., Renshaw, H., Richards, A. D., Waitt, G., Soderblom, E. J., Moseley, M. A., … Steinbach, W. J. (2016). Dephosphorylation of the Core Septin, AspB, in a Protein Phosphatase 2A-Dependent Manner Impacts Its Localization and Function in the Fungal Pathogen Aspergillus fumigatus. Front Microbiol, 7, 997. https://doi.org/10.3389/fmicb.2016.00997
Vargas-Muñiz, José M., Hilary Renshaw, Amber D. Richards, Greg Waitt, Erik J. Soderblom, Martin A. Moseley, Yohannes Asfaw, Praveen R. Juvvadi, and William J. Steinbach. “Dephosphorylation of the Core Septin, AspB, in a Protein Phosphatase 2A-Dependent Manner Impacts Its Localization and Function in the Fungal Pathogen Aspergillus fumigatus.Front Microbiol 7 (2016): 997. https://doi.org/10.3389/fmicb.2016.00997.
Vargas-Muñiz, José M., et al. “Dephosphorylation of the Core Septin, AspB, in a Protein Phosphatase 2A-Dependent Manner Impacts Its Localization and Function in the Fungal Pathogen Aspergillus fumigatus.Front Microbiol, vol. 7, 2016, p. 997. Pubmed, doi:10.3389/fmicb.2016.00997.
Vargas-Muñiz JM, Renshaw H, Richards AD, Waitt G, Soderblom EJ, Moseley MA, Asfaw Y, Juvvadi PR, Steinbach WJ. Dephosphorylation of the Core Septin, AspB, in a Protein Phosphatase 2A-Dependent Manner Impacts Its Localization and Function in the Fungal Pathogen Aspergillus fumigatus. Front Microbiol. 2016;7:997.

Published In

Front Microbiol

DOI

ISSN

1664-302X

Publication Date

2016

Volume

7

Start / End Page

997

Location

Switzerland

Related Subject Headings

  • 3207 Medical microbiology
  • 3107 Microbiology
  • 0605 Microbiology
  • 0503 Soil Sciences
  • 0502 Environmental Science and Management