Crystallization kinetics of binary colloidal monolayers.
Experiments and simulations are used to study the kinetics of crystal growth in a mixture of magnetic and nonmagnetic particles suspended in ferrofluid. The growth process is quantified using both a bond order parameter and a mean domain size parameter. The largest single crystals obtained in experiments consist of approximately 1000 particles and form if the area fraction is held between 65-70% and the field strength is kept in the range of 8.5-10.5 Oe. Simulations indicate that much larger single crystals containing as many as 5000 particles can be obtained under impurity-free conditions within a few hours. If our simulations are modified to include impurity concentrations as small as 1-2%, then the results agree quantitatively with the experiments. These findings provide an important step toward developing strategies for growing single crystals that are large enough to enable follow-on investigations across many subdisciplines in condensed matter physics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences