Skip to main content
Journal cover image

Dislocation climb models from atomistic scheme to dislocation dynamics

Publication ,  Journal Article
Niu, X; Luo, T; Lu, J; Xiang, Y
Published in: Journal of the Mechanics and Physics of Solids
February 1, 2017

We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the Mechanics and Physics of Solids

DOI

ISSN

0022-5096

Publication Date

February 1, 2017

Volume

99

Start / End Page

242 / 258

Related Subject Headings

  • Mechanical Engineering & Transports
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Niu, X., Luo, T., Lu, J., & Xiang, Y. (2017). Dislocation climb models from atomistic scheme to dislocation dynamics. Journal of the Mechanics and Physics of Solids, 99, 242–258. https://doi.org/10.1016/j.jmps.2016.11.012
Niu, X., T. Luo, J. Lu, and Y. Xiang. “Dislocation climb models from atomistic scheme to dislocation dynamics.” Journal of the Mechanics and Physics of Solids 99 (February 1, 2017): 242–58. https://doi.org/10.1016/j.jmps.2016.11.012.
Niu X, Luo T, Lu J, Xiang Y. Dislocation climb models from atomistic scheme to dislocation dynamics. Journal of the Mechanics and Physics of Solids. 2017 Feb 1;99:242–58.
Niu, X., et al. “Dislocation climb models from atomistic scheme to dislocation dynamics.” Journal of the Mechanics and Physics of Solids, vol. 99, Feb. 2017, pp. 242–58. Scopus, doi:10.1016/j.jmps.2016.11.012.
Niu X, Luo T, Lu J, Xiang Y. Dislocation climb models from atomistic scheme to dislocation dynamics. Journal of the Mechanics and Physics of Solids. 2017 Feb 1;99:242–258.
Journal cover image

Published In

Journal of the Mechanics and Physics of Solids

DOI

ISSN

0022-5096

Publication Date

February 1, 2017

Volume

99

Start / End Page

242 / 258

Related Subject Headings

  • Mechanical Engineering & Transports
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences