Zener and Avalanche Breakdown in As-Implanted Low-Voltage Si n-p Junctions
Implanted-diffused As layers in Si have been well-characterized and have been used in fabricating low-voltage n-p junctions. It is shown that these As layers form linearly graded junctions with a uniform B-doped background (ρ ≃ 0.006 Ω·cm). The grade constant of the As profile at the junction is known sufficiently well as a function of As dose, diffusion time, and temperature to allow quantitative use of existing tunneling and avalanche theories for the calculation of the reverse I-Vcurves. Following a verification of the calculated I-V curves and their temperature dependence as a function of grade constant, calculated curves are presented which correlate As implant dose and diffusion with junction breakdown voltage, breakdown impedance, and temperature coefficient of reverse voltage. The temperature coefficient is shown to change from negative to positive as the transition from tunneling to avalanche occurs. In addition, the relative importance of tunneling and multiplied-generation current as a function of current density is elucidated for any particular As layer grade constant. Copyright © 1976 by The Institute of Electrical and Electronics Engineers, Inc.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 4009 Electronics, sensors and digital hardware
- 0906 Electrical and Electronic Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 4009 Electronics, sensors and digital hardware
- 0906 Electrical and Electronic Engineering