Pelvic Breadth and Locomotor Kinematics in Human Evolution.
A broad pelvis is characteristic of most, if not all, pre-modern hominins. In at least some early australopithecines, most notably the female Australopithecus afarensis specimen known as "Lucy," it is very broad and coupled with very short lower limbs. In 1991, Rak suggested that Lucy's pelvic anatomy improved locomotor efficiency by increasing stride length through rotation of the wide pelvis in the axial plane. Compared to lengthening strides by increasing flexion and extension at the hips, this mechanism could avoid potentially costly excessive vertical oscillations of the body's center of mass (COM). Here, we test this hypothesis. We examined 3D kinematics of walking at various speeds in 26 adult subjects to address the following questions: Do individuals with wider pelves take longer strides, and do they use a smaller degree of hip flexion and extension? Is pelvic rotation greater in individuals with shorter legs, and those with narrower pelves? Our results support Rak's hypothesis. Subjects with wider pelves do take longer strides for a given velocity, and for a given stride length they flex and extend their hips less, suggesting a smoother pathway of the COM. Individuals with shorter legs do use more pelvic rotation when walking, but pelvic breadth was not related to pelvic rotation. These results suggest that a broad pelvis could benefit any bipedal hominin, but especially a short-legged australopithecine such as Lucy, by improving locomotor efficiency, particularly when carrying an infant or traveling in a foraging group with individuals of varying sizes. Anat Rec, 300:739-751, 2017. © 2017 Wiley Periodicals, Inc.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Walking
- Pelvis
- Male
- Locomotion
- Humans
- Gait
- Female
- Biomechanical Phenomena
- Biological Evolution
- Anatomy & Morphology
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Walking
- Pelvis
- Male
- Locomotion
- Humans
- Gait
- Female
- Biomechanical Phenomena
- Biological Evolution
- Anatomy & Morphology