Skip to main content
Journal cover image

Cubic scaling algorithms for RPA correlation using interpolative separable density fitting

Publication ,  Journal Article
Lu, J; Thicke, K
Published in: Journal of Computational Physics
December 15, 2017

We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

December 15, 2017

Volume

351

Start / End Page

187 / 202

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lu, J., & Thicke, K. (2017). Cubic scaling algorithms for RPA correlation using interpolative separable density fitting. Journal of Computational Physics, 351, 187–202. https://doi.org/10.1016/j.jcp.2017.09.012
Lu, J., and K. Thicke. “Cubic scaling algorithms for RPA correlation using interpolative separable density fitting.” Journal of Computational Physics 351 (December 15, 2017): 187–202. https://doi.org/10.1016/j.jcp.2017.09.012.
Lu J, Thicke K. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting. Journal of Computational Physics. 2017 Dec 15;351:187–202.
Lu, J., and K. Thicke. “Cubic scaling algorithms for RPA correlation using interpolative separable density fitting.” Journal of Computational Physics, vol. 351, Dec. 2017, pp. 187–202. Scopus, doi:10.1016/j.jcp.2017.09.012.
Lu J, Thicke K. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting. Journal of Computational Physics. 2017 Dec 15;351:187–202.
Journal cover image

Published In

Journal of Computational Physics

DOI

EISSN

1090-2716

ISSN

0021-9991

Publication Date

December 15, 2017

Volume

351

Start / End Page

187 / 202

Related Subject Headings

  • Applied Mathematics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 40 Engineering
  • 09 Engineering
  • 02 Physical Sciences
  • 01 Mathematical Sciences