Solving parametric PDE problems with artificial neural networks
The curse of dimensionality is commonly encountered in numerical partial differential equations (PDE), especially when uncertainties have to be modelled into the equations as random coefficients. However, very often the variability of physical quantities derived from PDE can be captured by a few features on the space of the coefficient fields. Based on such observation, we propose using neural network to parameterise the physical quantity of interest as a function of input coefficients. The representability of such quantity using a neural network can be justified by viewing the neural network as performing time evolution to find the solutions to the PDE. We further demonstrate the simplicity and accuracy of the approach through notable examples of PDEs in engineering and physics.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics