SU‐DD‐A1‐02: Parameter Optimization in Head and Neck IMRT for Elekta Linacs
Purpose: Planning and delivery in HN‐IMRT is challenging for Elekta linacs because of numerous constraints on beam delivery systems. The purpose of this study is to find a set of planning parameters that are applicable to most patients and optimal in terms of plan quality, delivery efficiency and dosimetric accuracy. Method and Materials: Four types of plans were created for each of 12 patients: ideal fluence optimization (FO), conventional two‐step optimization (TS) consisting of FO followed by MLC conversion, segment weight optimization (SW) and direct machine parameter optimization (DMPO). Maximum number of segments (NS) and minimum segment area (MSA) were varied in DMPO. Plan quality was evaluated based on score, dose distributions and dosimetric indices. Delivery efficiency was evaluated by irradiation time, and dosimetric accuracy by Mapcheck. Results: Plan quality deviates most from ideal FO for TS, with slight improvement for SW. DMPO is the closest to FO with the least variation among patients. NS of 80–160 in DMPO yield optimal plans. At larger NS (⩾80), plan quality decreases with MSA as expected, except for MSA <8cm2, which suggests presence of local minima in the DMPO algorithm. The irradiation time is strongly dependent on the plan segments (NS
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
- 0903 Biomedical Engineering
- 0299 Other Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nuclear Medicine & Medical Imaging
- 5105 Medical and biological physics
- 4003 Biomedical engineering
- 1112 Oncology and Carcinogenesis
- 0903 Biomedical Engineering
- 0299 Other Physical Sciences