Skip to main content

A quantum kinetic monte carlo method for quantum many-body spin dynamics

Publication ,  Journal Article
Cai, Z; Lu, J
Published in: SIAM Journal on Scientific Computing
January 1, 2018

We propose a general framework of a quantum kinetic Monte Carlo algorithm, based on a stochastic representation of a series expansion of the quantum evolution. Two approaches have been developed in the context of quantum many-body spin dynamics, using different decomposition of the Hamiltonian. The effectiveness of the methods is tested for many-body spin systems up to 40 spins.

Duke Scholars

Published In

SIAM Journal on Scientific Computing

DOI

EISSN

1095-7197

ISSN

1064-8275

Publication Date

January 1, 2018

Volume

40

Issue

3

Start / End Page

B706 / B722

Related Subject Headings

  • Numerical & Computational Mathematics
  • 4903 Numerical and computational mathematics
  • 4901 Applied mathematics
  • 0802 Computation Theory and Mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Cai, Z., & Lu, J. (2018). A quantum kinetic monte carlo method for quantum many-body spin dynamics. SIAM Journal on Scientific Computing, 40(3), B706–B722. https://doi.org/10.1137/17M1145446
Cai, Z., and J. Lu. “A quantum kinetic monte carlo method for quantum many-body spin dynamics.” SIAM Journal on Scientific Computing 40, no. 3 (January 1, 2018): B706–22. https://doi.org/10.1137/17M1145446.
Cai Z, Lu J. A quantum kinetic monte carlo method for quantum many-body spin dynamics. SIAM Journal on Scientific Computing. 2018 Jan 1;40(3):B706–22.
Cai, Z., and J. Lu. “A quantum kinetic monte carlo method for quantum many-body spin dynamics.” SIAM Journal on Scientific Computing, vol. 40, no. 3, Jan. 2018, pp. B706–22. Scopus, doi:10.1137/17M1145446.
Cai Z, Lu J. A quantum kinetic monte carlo method for quantum many-body spin dynamics. SIAM Journal on Scientific Computing. 2018 Jan 1;40(3):B706–B722.

Published In

SIAM Journal on Scientific Computing

DOI

EISSN

1095-7197

ISSN

1064-8275

Publication Date

January 1, 2018

Volume

40

Issue

3

Start / End Page

B706 / B722

Related Subject Headings

  • Numerical & Computational Mathematics
  • 4903 Numerical and computational mathematics
  • 4901 Applied mathematics
  • 0802 Computation Theory and Mathematics
  • 0103 Numerical and Computational Mathematics
  • 0102 Applied Mathematics