Skip to main content

Partition functions from rao-blackwellized tempered sampling

Publication ,  Conference
Carlson, DE; Stinson, P; Pakman, A; Paninski, L
Published in: 33rd International Conference on Machine Learning, ICML 2016
January 1, 2016

Partition functions of probability distributions are important quantities for model evaluation and comparisons. We present a new method to compute partition functions of complex and multi-modal distributions. Such distributions are often sampled using simulated tempering, which augments the target space with an auxiliary inverse temperature variable. Our method exploits the multinomial probability law of the inverse temperatures, and provides estimates of the partition function in terms of a simple quotient of Rao-Blackwellized marginal inverse temperature probability estimates, which are updated while sampling. We show that the method has interesting connections with several alternative popular methods, and offers some significant advantages. In particular, we empirically find that the new method provides more accurate estimates than Annealed Importance Sampling when calculating partition functions of large Restricted Boltz-mann Machines (RBM); moreover, the method is sufficiently accurate to track training and validation log-likelihoods during learning of RBMs, at minimal computational cost.

Duke Scholars

Published In

33rd International Conference on Machine Learning, ICML 2016

Publication Date

January 1, 2016

Volume

6

Start / End Page

4248 / 4262
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Carlson, D. E., Stinson, P., Pakman, A., & Paninski, L. (2016). Partition functions from rao-blackwellized tempered sampling. In 33rd International Conference on Machine Learning, ICML 2016 (Vol. 6, pp. 4248–4262).
Carlson, D. E., P. Stinson, A. Pakman, and L. Paninski. “Partition functions from rao-blackwellized tempered sampling.” In 33rd International Conference on Machine Learning, ICML 2016, 6:4248–62, 2016.
Carlson DE, Stinson P, Pakman A, Paninski L. Partition functions from rao-blackwellized tempered sampling. In: 33rd International Conference on Machine Learning, ICML 2016. 2016. p. 4248–62.
Carlson, D. E., et al. “Partition functions from rao-blackwellized tempered sampling.” 33rd International Conference on Machine Learning, ICML 2016, vol. 6, 2016, pp. 4248–62.
Carlson DE, Stinson P, Pakman A, Paninski L. Partition functions from rao-blackwellized tempered sampling. 33rd International Conference on Machine Learning, ICML 2016. 2016. p. 4248–4262.

Published In

33rd International Conference on Machine Learning, ICML 2016

Publication Date

January 1, 2016

Volume

6

Start / End Page

4248 / 4262