Skip to main content

The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting

Publication ,  Journal Article
Mukhopadhyay, S; Bansal, D; Delaire, O; Perrodin, D; Bourret-Courchesne, E; Singh, DJ; Lindsay, L
Published in: Physical Review B
September 5, 2017

Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.

Duke Scholars

Published In

Physical Review B

DOI

EISSN

2469-9969

ISSN

2469-9950

Publication Date

September 5, 2017

Volume

96

Issue

10

Related Subject Headings

  • 51 Physical sciences
  • 40 Engineering
  • 34 Chemical sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Mukhopadhyay, S., Bansal, D., Delaire, O., Perrodin, D., Bourret-Courchesne, E., Singh, D. J., & Lindsay, L. (2017). The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting. Physical Review B, 96(10). https://doi.org/10.1103/PhysRevB.96.100301
Mukhopadhyay, S., D. Bansal, O. Delaire, D. Perrodin, E. Bourret-Courchesne, D. J. Singh, and L. Lindsay. “The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting.” Physical Review B 96, no. 10 (September 5, 2017). https://doi.org/10.1103/PhysRevB.96.100301.
Mukhopadhyay S, Bansal D, Delaire O, Perrodin D, Bourret-Courchesne E, Singh DJ, et al. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting. Physical Review B. 2017 Sep 5;96(10).
Mukhopadhyay, S., et al. “The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting.” Physical Review B, vol. 96, no. 10, Sept. 2017. Scopus, doi:10.1103/PhysRevB.96.100301.
Mukhopadhyay S, Bansal D, Delaire O, Perrodin D, Bourret-Courchesne E, Singh DJ, Lindsay L. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting. Physical Review B. 2017 Sep 5;96(10).

Published In

Physical Review B

DOI

EISSN

2469-9969

ISSN

2469-9950

Publication Date

September 5, 2017

Volume

96

Issue

10

Related Subject Headings

  • 51 Physical sciences
  • 40 Engineering
  • 34 Chemical sciences