Skip to main content

Riesz Energy on the Torus: Regularity of Minimizers

Publication ,  Journal Article
Lu, J; Steinerberger, S
October 22, 2017

We study sets of $N$ points on the $d-$dimensional torus $\mathbb{T}^d$ minimizing interaction functionals of the type \[ \sum_{i, j =1 \atop i \neq j}^{N}{ f(x_i - x_j)}. \] The main result states that for a class of functions $f$ that behave like Riesz energies $f(x) \sim \|x\|^{-s}$ for $0< s < d$, the minimizing configuration of points has optimal regularity w.r.t. a Fourier-analytic regularity measure that arises in the study of irregularities of distribution. A particular consequence is that they are optimal quadrature points in the space of trigonometric polynomials up to a certain degree. The proof extends to other settings and also covers less singular functions such as $f(x) = \exp\bigl(- N^{\frac{2}{d}} \|x\|^2 \bigr)$.

Duke Scholars

Publication Date

October 22, 2017
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lu, J., & Steinerberger, S. (2017). Riesz Energy on the Torus: Regularity of Minimizers.
Lu, Jianfeng, and Stefan Steinerberger. “Riesz Energy on the Torus: Regularity of Minimizers,” October 22, 2017.
Lu J, Steinerberger S. Riesz Energy on the Torus: Regularity of Minimizers. 2017 Oct 22;
Lu, Jianfeng, and Stefan Steinerberger. Riesz Energy on the Torus: Regularity of Minimizers. Oct. 2017.
Lu J, Steinerberger S. Riesz Energy on the Torus: Regularity of Minimizers. 2017 Oct 22;

Publication Date

October 22, 2017