Skip to main content

Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation.

Publication ,  Journal Article
Xue, M; Rabbani, N; Momiji, H; Imbasi, P; Anwar, MM; Kitteringham, N; Park, BK; Souma, T; Moriguchi, T; Yamamoto, M; Thornalley, PJ
Published in: Biochem J
April 1, 2012

Abnormal cellular accumulation of the dicarbonyl metabolite MG (methylglyoxal) occurs on exposure to high glucose concentrations, inflammation, cell aging and senescence. It is associated with increased MG-adduct content of protein and DNA linked to increased DNA strand breaks and mutagenesis, mitochondrial dysfunction and ROS (reactive oxygen species) formation and cell detachment from the extracellular matrix. MG-mediated damage is countered by glutathione-dependent metabolism by Glo1 (glyoxalase 1). It is not known, however, whether Glo1 has stress-responsive up-regulation to counter periods of high MG concentration or dicarbonyl stress. We identified a functional ARE (antioxidant-response element) in the 5'-untranslated region of exon 1 of the mammalian Glo1 gene. Transcription factor Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) binds to this ARE, increasing basal and inducible expression of Glo1. Activators of Nrf2 induced increased Glo1 mRNA, protein and activity. Increased expression of Glo1 decreased cellular and extracellular concentrations of MG, MG-derived protein adducts, mutagenesis and cell detachment. Hepatic, brain, heart, kidney and lung Glo1 mRNA and protein were decreased in Nrf2-/- mice, and urinary excretion of MG protein and nucleotide adducts were increased approximately 2-fold. We conclude that dicarbonyl stress is countered by up-regulation of Glo1 in the Nrf2 stress-responsive system, protecting protein and DNA from increased damage and preserving cell function.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Biochem J

DOI

EISSN

1470-8728

Publication Date

April 1, 2012

Volume

443

Issue

1

Start / End Page

213 / 222

Location

England

Related Subject Headings

  • Transcription, Genetic
  • Response Elements
  • Pyruvaldehyde
  • Protein Binding
  • Oxidative Stress
  • NF-E2-Related Factor 2
  • Mutagenesis
  • Mice, Knockout
  • Mice
  • Male
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Xue, M., Rabbani, N., Momiji, H., Imbasi, P., Anwar, M. M., Kitteringham, N., … Thornalley, P. J. (2012). Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J, 443(1), 213–222. https://doi.org/10.1042/BJ20111648
Xue, Mingzhan, Naila Rabbani, Hiroshi Momiji, Precious Imbasi, M Maqsud Anwar, Neil Kitteringham, B Kevin Park, et al. “Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation.Biochem J 443, no. 1 (April 1, 2012): 213–22. https://doi.org/10.1042/BJ20111648.
Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N, et al. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J. 2012 Apr 1;443(1):213–22.
Xue, Mingzhan, et al. “Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation.Biochem J, vol. 443, no. 1, Apr. 2012, pp. 213–22. Pubmed, doi:10.1042/BJ20111648.
Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N, Park BK, Souma T, Moriguchi T, Yamamoto M, Thornalley PJ. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J. 2012 Apr 1;443(1):213–222.

Published In

Biochem J

DOI

EISSN

1470-8728

Publication Date

April 1, 2012

Volume

443

Issue

1

Start / End Page

213 / 222

Location

England

Related Subject Headings

  • Transcription, Genetic
  • Response Elements
  • Pyruvaldehyde
  • Protein Binding
  • Oxidative Stress
  • NF-E2-Related Factor 2
  • Mutagenesis
  • Mice, Knockout
  • Mice
  • Male