Skip to main content

Statistical learning in chip (SLIC)

Publication ,  Conference
Blanton, RD; Li, X; Mai, K; Marculescu, D; Marculescu, R; Paramesh, J; Schneider, J; Thomas, DE
Published in: 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015
January 5, 2016

Despite best efforts, integrated systems are born (manufactured) with a unique 'personality' that stems from our inability to precisely fabricate their underlying circuits, and create software a priori for controlling the resulting uncertainty. It is possible to use sophisticated test methods to identify the best-performing systems but this would result in unacceptable yields and correspondingly high costs. The system personality is further shaped by its environment (e.g., temperature, noise and supply voltage) and usage (i.e., the frequency and type of applications executed), and since both can fluctuate over time, so can the system's personality. Systems also grow old and degrade due to various wear-out mechanisms (e.g., negative-bias temperature instability), and unexpectedly due to various early-life failure sources. These nature and nurture influences make it extremely difficult to design a system that will operate optimally for all possible personalities. To address this challenge, we propose to develop statistical learning in-chip (SLIC). SLIC is a holistic approach to integrated system design based on continuously learning key personality traits on-line, for self-evolving a system to a state that optimizes performance hierarchically across the circuit, platform, and application levels. SLIC will not only optimize integrated-system performance but also reduce costs through yield enhancement since systems that would have before been deemed to have weak personalities (unreliable, faulty, etc.) can now be recovered through the use of SLIC.

Duke Scholars

Published In

2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015

DOI

Publication Date

January 5, 2016

Start / End Page

664 / 669
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Blanton, R. D., Li, X., Mai, K., Marculescu, D., Marculescu, R., Paramesh, J., … Thomas, D. E. (2016). Statistical learning in chip (SLIC). In 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015 (pp. 664–669). https://doi.org/10.1109/ICCAD.2015.7372633
Blanton, R. D., X. Li, K. Mai, D. Marculescu, R. Marculescu, J. Paramesh, J. Schneider, and D. E. Thomas. “Statistical learning in chip (SLIC).” In 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015, 664–69, 2016. https://doi.org/10.1109/ICCAD.2015.7372633.
Blanton RD, Li X, Mai K, Marculescu D, Marculescu R, Paramesh J, et al. Statistical learning in chip (SLIC). In: 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015. 2016. p. 664–9.
Blanton, R. D., et al. “Statistical learning in chip (SLIC).” 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015, 2016, pp. 664–69. Scopus, doi:10.1109/ICCAD.2015.7372633.
Blanton RD, Li X, Mai K, Marculescu D, Marculescu R, Paramesh J, Schneider J, Thomas DE. Statistical learning in chip (SLIC). 2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015. 2016. p. 664–669.

Published In

2015 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015

DOI

Publication Date

January 5, 2016

Start / End Page

664 / 669