Multiple-population moment estimation: Exploiting interpopulation correlation for efficient moment estimation in analog/mixed-signal validation
Moment estimation is an important problem during circuit validation, in both presilicon and postsilicon stages. From the estimated moments, the probability of failure and parametric yield can be estimated at each circuit configuration and corner, and these metrics are used for design optimization and making product qualification decisions. The problem is especially difficult if only a very small sample size is allowed for measurement or simulation, as is the case for complex analog/mixed-signal circuits. In this paper, we propose an efficient moment estimation method, called multiple-population moment estimation (MPME), that significantly improves estimation accuracy under small sample size. The key idea is to leverage the data collected under different corners/configurations to improve the accuracy of moment estimation at each individual corner/configuration. Mathematically, we employ the hierarchical Bayesian framework to exploit the underlying correlation in the data. We apply the proposed method to several datasets including postsilicon measurements of a commercial high-speed I/O link, and demonstrate an average error reduction of up to $2\times$ , which can be equivalently translated to significant reduction of validation time and cost. © 2014 IEEE.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computer Hardware & Architecture
- 4607 Graphics, augmented reality and games
- 4009 Electronics, sensors and digital hardware
- 1006 Computer Hardware
- 0906 Electrical and Electronic Engineering
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Computer Hardware & Architecture
- 4607 Graphics, augmented reality and games
- 4009 Electronics, sensors and digital hardware
- 1006 Computer Hardware
- 0906 Electrical and Electronic Engineering