Skip to main content

Formal verification of phase-locked loops using reachability analysis and continuization

Publication ,  Journal Article
Althoff, M; Rajhans, A; Krogh, BH; Yaldiz, S; Li, X; Pileggi, L
Published in: Communications of the ACM
October 22, 2013

We present a scalable and formal technique to verify locking time and stability for charge-pump phase-locked loops (PLLs). In contrast to the traditional simulation approach that only validates the PLL at a given operation condition, our proposed technique formally verified the PLL at all possible operation conditions. The dynamics of the PLL is described by a hybrid automaton, which incorporates the differential equations of the analog circuit elements as well as the switching logic of the digital circuit elements. Existing methods for computing reachable sets for hybrid automata cannot be used to verify the PLL model due to the large number of cycles required for locking. We develop a new method for computing effective overapproximations of the sets of states reached on each cycle by using uncertain parameters in a discrete-time model to represent the range of possible switching times, a technique we call continuization. Using this new method for reachability analysis, it is possible to verify locking specifications for a charge-pump PLL design for all possible initial states and parameter values in time comparable to the time required for a few simulation runs of the same behavioral model. © 2013 ACM.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Communications of the ACM

DOI

EISSN

1557-7317

ISSN

0001-0782

Publication Date

October 22, 2013

Volume

56

Issue

10

Start / End Page

97 / 104

Related Subject Headings

  • Information Systems
  • 46 Information and computing sciences
  • 08 Information and Computing Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Althoff, M., Rajhans, A., Krogh, B. H., Yaldiz, S., Li, X., & Pileggi, L. (2013). Formal verification of phase-locked loops using reachability analysis and continuization. Communications of the ACM, 56(10), 97–104. https://doi.org/10.1145/2507771.2507783
Althoff, M., A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li, and L. Pileggi. “Formal verification of phase-locked loops using reachability analysis and continuization.” Communications of the ACM 56, no. 10 (October 22, 2013): 97–104. https://doi.org/10.1145/2507771.2507783.
Althoff M, Rajhans A, Krogh BH, Yaldiz S, Li X, Pileggi L. Formal verification of phase-locked loops using reachability analysis and continuization. Communications of the ACM. 2013 Oct 22;56(10):97–104.
Althoff, M., et al. “Formal verification of phase-locked loops using reachability analysis and continuization.” Communications of the ACM, vol. 56, no. 10, Oct. 2013, pp. 97–104. Scopus, doi:10.1145/2507771.2507783.
Althoff M, Rajhans A, Krogh BH, Yaldiz S, Li X, Pileggi L. Formal verification of phase-locked loops using reachability analysis and continuization. Communications of the ACM. 2013 Oct 22;56(10):97–104.

Published In

Communications of the ACM

DOI

EISSN

1557-7317

ISSN

0001-0782

Publication Date

October 22, 2013

Volume

56

Issue

10

Start / End Page

97 / 104

Related Subject Headings

  • Information Systems
  • 46 Information and computing sciences
  • 08 Information and Computing Sciences