Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance.
Quantum simulation uses a well-known quantum system to predict the behavior of another quantum system. Certain limitations in this technique arise, however, when applied to specific problems, as we demonstrate with a theoretical and experimental study of an algorithm proposed by Wu, Byrd, and Lidar [Phys. Rev. Lett. 89, 057904 (2002).10.1103/PhysRevLett.89.057904] to find the low-lying spectrum of a pairing Hamiltonian. While the number of elementary quantum gates required scales polynomially with the size of the system, it increases inversely to the desired error bound E. Making such simulations robust to decoherence using fault tolerance requires an additional factor of approximately 1/E gates. These constraints, along with the effects of control errors, are illustrated using a three qubit NMR system.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences